Biologists demonstrate how satellite data on fishing can help protect ocean biodiversity

March 10, 2016 by Julie Cohen

Beyond the breakers, the ocean is like the Wild West. While not completely lawless, its vastness and remoteness make it hard to observe and more difficult to manage human activity.

Recently developed technology may change that. A navigational safety aid called AIS (Automatic Ship Identification Systems)—which transmits publically accessible data on the exact position of ocean-going vessels via satellite—is not only useful for collision avoidance, but also has potential as a means of protecting ocean health. An international group of scientists explored exactly how the power of this information could be harnessed to intelligently manage sustainable futures for fish and fishermen across global oceans.

UC Santa Barbara's Douglas McCauley led the team that analyzed billions of vessel data points to answer two important questions: Is a new cohort of massive marine parks doing its job to stop illegal fishing? And can this data help back a planned United Nations treaty to better manage high seas biodiversity? Their results appear in the journal Science.

"The oceans are home to our planet's most spectacular wildlife, healthiest food and treasured ecosystems," said McCauley, an assistant professor in UCSB's Department of Ecology, Evolution, and Marine Biology. "We need a new generation of smart observation tools to carefully manage the future of the ocean."

In the past five years, recognition of the diverse values of the ocean has fueled explosive global interest in setting up gigantic ocean parks, but little attention has been paid to how to protect them. In 2015, more of the ocean was protected in these massive parks than ever before.

"These new parks will be a game-changer for the oceans," McCauley said, "but only if they do what they promise." He contends that the new mega-park boundaries are too big to be enforced by boat or plane, but suggests that satellite observation could provide a solution.

So the researchers took satellite-sourced AIS data for a test drive. They watched from thousands of miles away as Kiribati, one of the world's poorest countries, closed the waters around the Phoenix Islands to fishing on Jan. 1, 2015. Almost all fishing boats vacated this California-sized protected area right before it closed. One exception was reported to Kiribati, and officials interdicted and fined the vessel.

Last year, the United Nations committed to drawing up a new treaty to manage biodiversity in the 64 percent of global oceans in international waters. McCauley's team mapped out human use of the high seas in marine areas that lie beyond national boundaries, creating the world's first view of satellite-tracked fishing activity in the Pacific.

According to McCauley, the value of AIS data extends well beyond keeping track of where fishing takes place. He noted that this same data can be used to reduce collisions between whales and ships, to intelligently zone the ocean to keep wildlife safe and marine commerce flourishing, and to monitor the launch of seabed mining operations.

"Determining what is going on out there has previously been like assembling a puzzle in the dark," McCauley said. "But with this new data, it's like someone suddenly turned on the lights."

Nonetheless, the vessel-tracking data has its weaknesses. "The data is only as strong as the policy that backs it up," McCauley said. "Not enough vessels are using AIS transponders and nobody observes whether they are kept on and used properly."

The investigators argue that this poses a double threat to public safety and the environment. "We wouldn't allow airplane pilots to decide whether or not they keep their tracking systems on when landing at busy airports," said McCauley, who pointed out that most of the loopholes in this system could be closed with policy reform.

"For decades, we have been tracking other species—from seabirds to sharks—but now for the first time, we can understand our own ecology, and how and where we impact the oceans on a global scale," said co-author Boris Worm of Dalhousie University in Halifax, Nova Scotia. "This is revolutionary information, both from a scientific and policy perspective."

The authors of the paper want to put the power of this new data in everyone's hands. To make that happen, a group called Global Fishing Watch aims to launch a tool that will allow anyone to make free use of AIS data on fishing.

McCauley suggests that in an increasingly crowded world, it is healthy and necessary to embrace smart tech like AIS. "With tools such as this, we stand a real chance of stopping activities that steal food and biodiversity from poor nations, of curbing social injustice at sea and of cooperatively managing a healthy future for our oceans," he said.

Explore further: Wildlife loss in the global ocean

More information: "Ending hide and seek at sea," Science, DOI: 10.1126/science.aad5686

Related Stories

Wildlife loss in the global ocean

January 15, 2015

Over the past 500 years, approximately 500 land-based animal species have gone the way of the dodo, becoming extinct as a result of human activity. In the ocean, where scientists count only 15 or so such losses, the numbers ...

Google joins fight against illegal fishing

November 14, 2014

Technology giant Google has taken the battle against illegal fishing online, with the company unveiling a tool in Australia on Friday that harnesses satellite data to track thousands of boats in real time.

Marine vessel tracking system also a lifesaver for wildlife

February 11, 2016

A new paper from WCS (Wildlife Conservation Society), in partnership with researchers and practitioners from National Oceanic and Atmospheric Administration, U.S. Coast Guard, Space Quest, Google, and SkyTruth, reviews the ...

A case study of manta rays and lagoons

July 2, 2014

Douglas McCauley, a new assistant professor in UC Santa Barbara's Department of Ecology, Evolution and Marine Biology, does fieldwork in one of the most isolated places in the world—Palmyra Atoll. About halfway between ...

UK monitoring system sets out to catch illegal fishing

January 22, 2015

As many as one in five fish are landed outside of national or international regulations. These high numbers are not due to stray boats but are the result of industrial-scale pirate operations. The value of this trade could ...

Recommended for you

Multinationals act on ocean-clogging plastics

January 16, 2017

Forty of the world's biggest companies assembled in Davos agreed on Monday to come up with cleaner ways to make and consume plastic as waste threatens the global eco-system, especially in oceans.

Tracking Antarctic adaptations in diatoms

January 16, 2017

Diatoms are a common type of photosynthetic microorganism, found in many environments from marine to soil; in the oceans, they are responsible for more than a third of the global ocean carbon captured during photosynthesis. ...

Study tracks 'memory' of soil moisture

January 16, 2017

The top 2 inches of topsoil on all of Earth's landmasses contains an infinitesimal fraction of the planet's water—less than one-thousandth of a percent. Yet because of its position at the interface between the land and ...

How the darkness and the cold killed the dinosaurs

January 16, 2017

66 million years ago, the sudden extinction of the dinosaurs started the ascent of the mammals, ultimately resulting in humankind's reign on Earth. Climate scientists have now reconstructed how tiny droplets of sulfuric acid ...

Soil pores, carbon stores, and breathing microbes

January 16, 2017

Researchers at the Pacific Northwest National Laboratory (PNNL) recently studied how moisture influences soil heterotrophic respiration. That's the breathing-like process by which microbes convert dead organic carbon in the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.