NASA team demonstrates loading of Swedish 'green' propellant

February 4, 2016 by Lori Keesey
A Goddard team, led by engineer Henry Mulkey (middle), prepares a tank containing a Swedish-developed green propellant before its simulated loading at the Wallops Flight Facility late last year. Kyle Bentley (squatting) and Joe Miller (standing to the right of Mulkey) assisted in the demonstration. Credit: NASA/C. Perry

A NASA team has successfully demonstrated the handling and loading of a new-fangled, Swedish-developed "green propellant" that smells like glass cleaner, looks like chardonnay, but has proven powerful enough to propel a satellite.

As part of an international agreement with the Swedish National Space Board (SNSB), the team simulated a flight-vehicle loading operation with LMP-103S Green Propellant at Wallops Flight Facility on Virginia's Eastern Shore. The team demonstrated the proper storage and then loading of the propellant into a flight-like tank provided by the New York-based Moog Inc., an aerospace company interested in green-propulsion technology.

This was the first-ever demonstration of its type on a U.S. range, said Henry Mulkey, an engineer at NASA's Goddard Space Flight Center in Greenbelt, Maryland, who led the effort.

The demonstration, which took place late in 2015, will be followed this year by two other tests. Goddard's Propulsion Branch is carrying out a fracture test to determine the behavior of a flight tank should it crack while loaded with the propellant. And at the end of 2016, the branch also plans to test fire two Swedish-developed spacecraft thrusters powered by LMP-103S, said Caitlin Bacha, associate head of the center's Propulsion Branch.

All tests are designed to show that LMP-103S is a viable, higher-performing, safer, and less-expensive alternative to hydrazine, a highly toxic propellant that requires personnel to don cumbersome, full-body protective gear when handling and loading the propellant into spacecraft. By way of comparison, Mulkey said he mixed LMP-103S wearing just safety glasses and a smock.

The propellant, which a Stockholm-based company, ECAPS AB, began developing about two decades ago with SNSB funding, is based on ammonium dinitramide, a high-energy salt. It made its debut about five years ago aboard PRISMA, a Swedish spacecraft equipped with two one-Newton thrusters. (A Newton is a unit of force.)

Over the years, 70 LMP-103S-powered thrusters have been built and used in different applications. NASA's Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) mission also is investigating the use of LMP-103S-powered thrusters.

"We gained a lot of knowledge and hands-on experience from this pathfinder activity," Mulkey said. "We can take this experience and directly apply it to other flight-loading activities."

The Other 'Green' Propellant

Goddard's experimentation with LMP-103S is just part of NASA's green propellant story.

Goddard, as well as a handful of other NASA centers, also is participating in the Green Propellant Infusion Mission (GPIM). GPIM, which NASA's Space Technology Mission Directorate expects to launch in 2016, will carry 31 lbs. of another green propellant—AF-M315E—developed by the U.S. Air Force Research Laboratory in California. During the demonstration to be carried out by Ball Aerospace & Technologies Corp., of Boulder, Colorado, the spacecraft's five engines or thrusters will burn in different operations, testing how reliably the engines perform. Aerojet Rocketdyne, of Redmond, Washington, built the thrusters.

For its part, Goddard carried out fluid testing on GPIM's systems and components, Bacha said. In particular, the test team carried out the first-ever "surge" and flow testing on AF-M315E. Surge is a phenomenon that occurs when an isolation valve opens to allow propellant to rapidly fill empty manifold lines. These pressures, if too high, potentially can damage sensitive flight components downstream. Flow testing, meanwhile, reveals how individual components perform in a system using the propellant. No data of this type existed for the AF-M315E prior to Goddard's surge and flow testing, Bacha said.

"We have so many balls in the air with green propellant," she added. "We appreciate the opportunity to get our hands dirty, so to speak, with these propellants."

Another Alternative

Although the more traditionally used hydrazine will not be completely displaced due to its long heritage and widespread use, the two green propellants do offer compelling advantages.

In addition to being easier to handle, they are more tolerant of low temperatures and could bring about less-expensive, more flexible mission designs. Furthermore, both green propellant options are better performing than hydrazine, meaning that a spacecraft could carry out more maneuvers on one tank of propellant or could reduce the needed propellant leaving room for additional flight instruments.

"It's beneficial that we understand both," Mulkey said. "The change is coming."

Explore further: GPIM spacecraft to validate use of "green" propellant

Related Stories

GPIM spacecraft to validate use of "green" propellant

August 21, 2014

( —Milestone progress is being made in readying NASA's Green Propellant Infusion Mission (GPIM) for launch in 2016, a smallsat designed to test the unique attributes of a high-performance, non-toxic, "green" fuel ...

Image: Journey to space in a vacuum chamber

May 20, 2015

When you need to test hardware designed to operate in the vast reaches of space, you start in a vacuum chamber.  NASA's Glenn Research Center in Cleveland has many of them, but Vacuum Chamber 5 (VF-5) is special.  Supporting ...

Recommended for you

One of the brightest distant galaxies known discovered

January 23, 2017

An international team led by researchers from the Instituto de Astrofísica de Canarias (IAC) and the University of La Laguna (ULL) has discovered one of the brightest "non-active" galaxies in the early universe. Finding ...

Dwarf galaxies shed light on dark matter

January 23, 2017

The first sighting of clustered dwarf galaxies bolsters a leading theory about how big galaxies such as our Milky Way are formed, and how dark matter binds them, researchers said Monday.

Freeze-dried food and 1 bathroom: 6 simulate Mars in dome

January 20, 2017

Crammed into a dome with one bathroom, six scientists will spend eight months munching on mostly freeze-dried foods—with a rare treat of Spam—and have only their small sleeping quarters to retreat to for solace.

Image: Wavemaker moon Daphnis

January 20, 2017

The wavemaker moon, Daphnis, is featured in this view, taken as NASA's Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn's rings on Jan. 16, 2017. This is the closest view of the small ...

Video: A colorful 'landing' on Pluto

January 20, 2017

What would it be like to actually land on Pluto? This movie was made from more than 100 images taken by NASA's New Horizons spacecraft over six weeks of approach and close flyby in the summer of 2015. The video offers a trip ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.