PPPL engineers complete the design of Wendelstein 7-X scraper unit

January 12, 2016 by Raphael Rosen, Princeton Plasma Physics Laboratory

Engineers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have finished designing a novel component for the Wendelstein 7-X (W7-X) stellarator, which recently opened at the Max Planck Institute of Plasma Physics (IPP) in Griefswald, Germany. Known as a "test divertor unit (TDU) scraper element," the component intercepts some of the heat flowing towards the divertor—a part of the machine that collects heat and particles as they escape from the plasma before they hit the stellarator wall or degrade the plasma's performance. Stellarators are fusion facilities that confine plasma in twisty magnetic fields, compared with the symmetrical fields that tokamaks use.

Two of the components are being built and are scheduled to be delivered to IPP in September 2016, with the complete unit to be installed and ready to operate in late 2017. Once installed, the scraper will let physicists explore a wide variety of ways to arrange the stellarator's magnetic fields and vary the currents and pressures of the . This project was supported by the DOE Office of Science.

Engineers realized the need for the scraper element when they noticed that as the plasma exited the vessel, it sometimes struck parts of the divertor that weren't intended to handle high heat loads. "This problem had to be solved to avoid damage to the stellarator equipment," said Hutch Neilson, head of PPPL's advanced projects department and coordinator of PPPL's collaborations with W7-X.

The resulting design, begun by scientists at Oak Ridge National Laboratory (ORNL) and completed by researchers at PPPL, ensures that the heat from fusion reactions will hit the scraper before reaching the divertor. "The scraper element is an additional divertor plate that intercepts the heat earlier," said Sam Lazerson, a stellarator computational physicist at PPPL who will be stationed at W7-X until February 2016.

Engineers plan the scraper together with diagnostic devices to measure the heat flow more precisely. And they will use computer models to "check our understanding of how the exhaust power flows from the plasma to the stellarator's first wall," said Neilson.

Designing the scraper element meant overcoming several obstacles. The primary physics-related challenge involved finding the best shape for the scraper's plasma-facing surface. This process called for modeling the "edge plasma flows in the complicated 3D magnetic field in both the edge and divertor regions," said Neilson.

Engineers also had to consider that the scraper would not be actively cooled. This was a problem since the temperature of the scraper would rise more quickly than that of its supporting structure during W7-X operations. "The design relied on sophisticated thermal-mechanical analyses by our Engineering Analysis Branch," said Neilson. The analysis ensured that "all materials will stay below their temperature limits and that stresses caused by thermal expansion will be low enough to avoid component damage."

A panel of researchers from PPPL, ORNL, and IPP approved the design on November 11, 2015, after a series of reviews. According to a committee report, "discussions between the PPPL cognizant engineer, Douglas Loesser, and IPP staff, resulted in a simplified design that will significantly reduce design, fabrication, and assembly costs."

Explore further: A promising concept on the path to fusion energy

Related Stories

A promising concept on the path to fusion energy

March 31, 2014

(Phys.org) —Completion of a promising experimental facility at the U.S. Department of Energy's Princeton Plasma Laboratory (PPPL) could advance the development of fusion as a clean and abundant source of energy for generating ...

Identifying new sources of turbulence in spherical tokamaks

November 25, 2015

For fusion reactions to take place efficiently, the atomic nuclei that fuse together in plasma must be kept sufficiently hot. But turbulence in the plasma that flows in facilities called tokamaks can cause heat to leak from ...

US joining the Wendelstein 7-X fusion project

July 7, 2011

The USA is investing over 7.5 million dollars in the construction of the Wendelstein 7-X fusion device at Max Planck Institute for Plasma Physics in Greifswald. In the three-year project, starting in 2011, scientists from ...

Helping general electric upgrade the US power grid

October 28, 2014

When researchers at General Electric Co. sought help in designing a plasma-based power switch, they turned to the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL). The proposed switch, which GE ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.