Physicists simulate innovative method for starting up tokamaks without using solenoid

January 5, 2016 by Raphael Rosen
PPPL scientist Francesca Poli. Credit: Elle Starkman/PPPL Office of Communications

Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have produced self-consistent computer simulations that capture the evolution of an electric current inside fusion plasma without using a central electromagnet, or solenoid. The simulations of the process, known as non-inductive current ramp-up, were performed using TRANSP, the gold-standard code developed at PPPL. The results were published in October 2015 in Nuclear Fusion.

In traditional donut-shaped tokamaks, a large solenoid runs down the center of the reactor. By varying the electrical in the solenoid scientists induce a current in the plasma. This current starts up the plasma and creates a second that completes the forces that hold the hot, charged gas together.

But spherical tokamaks, a compact variety of fusion reactor that produces high plasma pressure with relatively low magnetic fields, have little room for solenoids. Spherical tokamaks look like cored apples and have a smaller central hole for the solenoid than conventional tokamaks do. Physicists, therefore, have been trying to find alternative methods for producing the current that starts the plasma and completes the magnetic field in spherical tokamaks.

One such method is known as coaxial helicity injection (CHI). During CHI, researchers switch on an electric coil that runs beneath the tokamak. Above this coil is a gap that opens into the tokamak's vacuum vessel and circles the tokamak's floor. The switched-on electrical current produces a magnetic field that connects metal plates on either side of the gap.

Researchers next puff gas through the gap and discharge a spark across the two plates. This process causes magnetic reconnection—the process by which the magnetic fields snap apart and reconnect. This reconnection creates a magnetic bubble that fills the tokamak and produces the vital electric current that starts up the plasma and completes the magnetic field.

This current must be nurtured and fed. According to lead author Francesca Poli, the new computer simulations show that the current can best be sustained by injecting high-harmonic radio-frequency waves (HHFWs) and neutral beams into the plasma.

HHFW's are radio-frequency waves that can heat both electrons and ions. The neutral beams, which consist of streams of hydrogen atoms, become charged when they enter the plasma and interact with the ions. The combination of the HHFWs and neutral beams increases the current from 300 kiloamps to 1 mega amp.

But neither HHFWs nor neutral beams can be used at the start of the process, when the plasma is relatively cool and not very dense. Poli found that HHFWs would be more effective if the plasma were first heated by electron cyclotron waves, which transfer energy to the electrons that circle the magnetic field lines.

"With no electron cyclotron waves you would have to pump in four megawatts of HHFW power to create 400 kiloamps of current," she said. "With these waves you can get the same amount of current by pumping in only one megawatt of power.

"All of this is important because it's hard to control the plasma at the start-up," she added. "So the faster you can control the , the better."

Explore further: Giant structures called plasmoids could simplify the design of future tokamaks

Related Stories

Identifying new sources of turbulence in spherical tokamaks

November 25, 2015

For fusion reactions to take place efficiently, the atomic nuclei that fuse together in plasma must be kept sufficiently hot. But turbulence in the plasma that flows in facilities called tokamaks can cause heat to leak from ...

Recommended for you

New bioimaging technique is fast and economical

August 18, 2017

A new approach to optical imaging makes it possible to quickly and economically monitor multiple molecular interactions in a large area of living tissue—such as an organ or a small animal; technology that could have applications ...

Team images tiny quasicrystals as they form

August 17, 2017

When Israeli scientist Daniel Shechtman first saw a quasicrystal through his microscope in 1982, he reportedly thought to himself, "Eyn chaya kazo"—Hebrew for, "There can be no such creature."


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.