Image: Spokes in Serpens Core

January 19, 2016
Credit: ESA/Herschel/PACS/SPIRE/V. Roccatagliata (U. München, Germany)

The interstellar medium fills the 'empty' space between the stars in our galaxy. It is a mix of molecular clouds, cold and warm gases, regions of electrically charged hydrogen, and more.

Molecular clouds are the densest part of the , holding most of its mass in the form of hydrogen gas. ESA's Herschel space observatory has revealed that many are built around filaments, with dense threads snaking throughout each cloud. These filaments potentially transport material, and, when massive enough, are known to form .

This Herschel image shows the Serpens Core, the heart of a giant molecular cloud. The Core is the bright clump towards the upper right, with a more diffuse secondary cluster, named Ser G3-G6, shown at the bottom right. Also visible as a faint yellow glow towards the upper left of the frame is a region known as LDN 583 that shines brightly in the far-infrared.

Giant contain up to 10 million times the mass of the Sun, and can stretch for hundreds of light-years. Compared to the rest of space they are dense, holding up to a thousand atoms per cubic centimetre – and even more in star-forming regions. However, these properties are relative: even at their densest, these clouds are more than 10 times emptier than the best laboratory vacuums we can produce on Earth.

These giant clouds are complex formations, most often made up of filaments mixed with clumpy and irregular folds, sheets and bubble-like structures. A typical spiral galaxy like the Milky Way can contain thousands of them, accompanied by many of their smaller relatives.

Serpens is an ideal target for scientists wanting to know more about , because it lies just 1400 light-years from us. Scientists compared Herschel's observations of this cloud to a state-of-the-art simulation to find out more about the cloud's properties, and to test the accuracy of their model.

They discovered a radial network of filaments stretching throughout the Serpens Core, filaments that are predicted to break and fragment to form the cores of new stars. These resemble the spokes of a wheel, with the Core forming the hub.

Explore further: Image: Feathery filaments in Mon R2

Related Stories

Image: Feathery filaments in Mon R2

August 25, 2015

Fierce flashes of light ripple through delicate tendrils of gas in this new image, from ESA's Herschel space observatory, which shows the dramatic heart of a large and dense cosmic cloud known as Mon R2. This cloud lies some ...

Herschel's hunt for filaments in the Milky Way

May 29, 2015

Observations with ESA's Herschel space observatory have revealed that our Galaxy is threaded with filamentary structures on every length scale. From nearby clouds hosting tangles of filaments a few light-years long to gigantic ...

Herschel links star formation to sonic booms

April 13, 2011

(PhysOrg.com) -- ESA's Herschel space observatory has revealed that nearby interstellar clouds contain networks of tangled gaseous filaments. Intriguingly, each filament is approximately the same width, hinting that they ...

Image: The Magellanic Clouds and an interstellar filament

September 7, 2015

Portrayed in this image from ESA's Planck satellite are the two Magellanic Clouds, among the nearest companions of our Milky Way galaxy. The Large Magellanic Cloud, about 160 000 light-years away, is the large red and orange ...

Recommended for you

Bright areas on Ceres suggest geologic activity

December 13, 2017

If you could fly aboard NASA's Dawn spacecraft, the surface of dwarf planet Ceres would generally look quite dark, but with notable exceptions. These exceptions are the hundreds of bright areas that stand out in images Dawn ...

Major space mystery solved using data from student satellite

December 13, 2017

A 60-year-old mystery regarding the source of some energetic and potentially damaging particles in Earth's radiation belts is now solved using data from a shoebox-sized satellite built and operated by University of Colorado ...

Spanning disciplines in the search for life beyond Earth

December 13, 2017

The search for life beyond Earth is riding a surge of creativity and innovation. Following a gold rush of exoplanet discovery over the past two decades, it is time to tackle the next step: determining which of the known exoplanets ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.