First photo of planet in making captured

UA researchers capture first photo of planet in making
A composite where blue represents the MagAO data taken at H-alpha, and green and red show the LBT data taken at Ks and L' bands. The greyscale is a previously published millimeter image of the disk. Credit: Stephanie Sallum

There are 450 light-years between Earth and LkCa15, a young star with a transition disk around it, a cosmic whirling dervish, a birthplace for planets.

Despite the disk's considerable distance from Earth and its gaseous, dusty atmosphere, University of Arizona researchers captured the first photo of a planet in the making, a planet residing in a gap in LkCa15's disk.

Of the roughly 2,000 known exoplanets—planets that orbit a star other than our sun—only about 10 have been imaged, and that was long after they had formed, not when they were in the making.

"This is the first time that we've imaged a planet that we can say is still forming," says Steph Sallum, a UA graduate student, who with Kate Follette, a former UA graduate student now doing postdoctoral work at Stanford University, led the research.

The researchers' results were published in the Nov. 19 issue of Nature.

Only months ago, Sallum and Follette were working independently, each on her own Ph.D. project. But serendipitously they had set their sights on the same star. Both were observing LkCa15, which is surrounded by a special kind of that contains an inner clearing, or gap.

Animation created by Andrew Shuta (University of Arizona) and was conceptualized by Laird Close (University of Arizona; disk and planet illustration modified from NASA/JPL-Caltech image; white disk VLA image from Andrea Isella (Rice University); all other LkCa15 images from the Magellan and LBT telescopes. See Sallum, et. al. Nature 2015 for details. Credit: Video courtesy of the University of Arizona

Protoplanetary disks form around young stars using the debris left over from the star's formation. It is suspected that planets then form inside the disk, sweeping up dust and debris as the material falls onto the planets instead of staying in the disk or falling onto the star. A gap is then cleared in which planets can reside.

The researchers' new observations support that view. Sallum says researchers are just now being able to image objects that are close to and much fainter than a nearby star. "That's because of researchers at the University of Arizona who have developed the instruments and techniques that make that difficult observation possible," she says.

Forming planet observed for first time
An artist's conception of planets forming in a transition disk like LkCa 15. The planets within the disk clearing sweep up material that would have otherwise fallen onto the star. Credit: NASA/JPL-Caltech

Those instruments include the Large Binocular Telescope, or LBT, the world's largest telescope, located on Arizona's Mount Graham, and the UA's Magellan Telescope and its Adaptive Optics System, MagAO, located in Chile.

Capturing sharp images of distant objects is difficult thanks in large part to atmospheric turbulence, the mixing of hot and cold air.

"When you look through the Earth's atmosphere, what you're seeing is cold and hot air mixing in a turbulent way that makes stars shimmer," says Laird Close, UA astronomy professor and Follette's graduate adviser.

"To a big telescope, it's a fairly dramatic thing. You see a horrible-looking image, but it's the same phenomenon that makes city lights and stars twinkle."

Josh Eisner, UA astronomy professor and Sallum's graduate adviser, says big telescopes "always suffer from this type of thing." But by using the LBT system and a novel imaging technique, he and Sallum succeeded in getting the crispest infrared images yet of LkCa15.

Meanwhile, Close and Follette used Magellan's adaptive optics system MagAO to independently corroborate Eisner and Sallum's planetary findings.

"Results like this have only been made possible with the application of a lot of very advanced new technology to the business of imaging the stars," says professor Peter Tuthill of the University of Sydney and one of the study's co-authors, "and it's really great to see them yielding such impressive results."

More information: S. Sallum et al. Accreting protoplanets in the LkCa 15 transition disk, Nature (2015). DOI: 10.1038/nature15761

Journal information: Nature

Citation: First photo of planet in making captured (2015, November 18) retrieved 26 April 2024 from https://phys.org/news/2015-11-photo-planet-captured.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Astronomers peer into the 'amniotic sac' of a planet-hosting star

2477 shares

Feedback to editors