Chesapeake Bay surface water temperature is increasing over time

October 14, 2015, University of Maryland Center for Environmental Science

A new study shows that surface water temperature in the Chesapeake Bay is increasing more rapidly than air temperature, signaling a need to look at the impact of warming waters on one of the largest and most productive estuaries in the world. The study, completed by Haiyong Ding and Andrew Elmore of the University of Maryland Center for Environmental Science's Appalachian Laboratory, was published in the October issue of Remote Sensing of Environment.

"I was surprised that the pattern of increasing was so clear," said study co-author Andrew Elmore. "If you take any group of five years, they are generally warmer than the previous five years. A consistent warming trend happening over a really large portion of the Bay."

Trends of increasing water temperature were found for more than 92% of the Chesapeake Bay. Water temperature has been increasing more rapidly than air temperature in some areas, particularly in the main stem of the Bay and in the Potomac estuary. The Patapsco River in Baltimore showed the fastest warming of any area of the Bay, implicating urbanization of the watershed and use of the Bay's waters to cool power plants along its shore.

Water temperature is one of the most important factors in understanding the functioning of an aquatic ecosystem. It signals spawning time for fish and warmer water holds less dissolved oxygen than colder water, thereby making estuarine ecosystems experiencing eutrophication or algal blooms more susceptible to dead zones. Many aspects of estuarine management and restoration are dependent on good temperature data.

While warming water temperature in the Bay is not a novel finding, the study used satellite data to map a 30-year average minimum and maximum temperatures across the Bay north of the Potomac River. For decades, measurements have been taken from piers, stationary buoys and mobile platforms, which is expensive and time consuming to deploy over large bodies of water.

Elmore and his research team used data from satellites that orbit the earth taking a picture of the Chesapeake Bay every 16 days. Because water emits electromagnetic radiation characteristic of its temperature, each satellite image can be converted to a map of water surface temperature. By analyzing images in consecutive 5-year groups, the researchers were able to separate seasonal variation from long-term trends.

Increasing water temperatures can be driven by climate change, coastal urbanization (since 1975, urban land cover has increased by more than 100% in portions of the coastal plain adjacent to the Bay), runoff from impervious surfaces (imagine the stormwater during a hot afternoon thunderstorm running into a stream at bath-water temperatures), and discharges from industrial processes, such as power plants that use water from the Bay and its tributaries for cooling.

The study compared annual average water surface temperatures for the past 30 years against records. Increasing trends in air and water temperature were found at all of the stations studied, with rates generally ranging between 0.5 and 1 degree C every ten years.

Explore further: Chesapeake Bay region streams are warming

More information: "Spatio-temporal patterns in water surface temperature from Landsat time series data in the Chesapeake Bay, U.S.A.," Remote Sensing of Environment, 2015.

Related Stories

Chesapeake Bay region streams are warming

December 8, 2014

The majority of streams in the Chesapeake Bay region are warming, and that increase appears to be driven largely by rising air temperatures. These findings are based on new U.S. Geological Survey research published in the ...

How does El Nino warm the entire globe?

October 6, 2015

We regularly hear about how El Niño events raise the temperature across much of the planet, contributing to spikes in global average temperature such as the one witnessed in 1998, with severe bush fires, droughts and floods.

A happier environment for fish

September 15, 2015

Just below the sun-warmed surface of a dam, the water temperature can be breath-catchingly cold. So imagine how chilly the water gets when you descend another 20, 30 or even 50 metres to the dam bed.

Recommended for you

NASA's Mars 2020 rover is put to the test

March 20, 2019

In a little more than seven minutes in the early afternoon of Feb. 18, 2021, NASA's Mars 2020 rover will execute about 27,000 actions and calculations as it speeds through the hazardous transition from the edge of space to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.