Young gas giants fly close to their suns

September 9, 2015, University of St Andrews
Young gas giants fly close to their suns
Artist view of a newly born giant planet in the disc of a baby star. Credit: NASA/JPL

Hot Jupiters, giant Jupiter-like exoplanets that orbit 20 times closer to their host stars than the Earth does to the Sun, can form and migrate towards their infant stars in as little as a few million years, researchers at the University of St Andrews have discovered.

An international research team, led by French astronomer Dr Jean-François Donati, and including the University of St Andrews, has secured preliminary evidence that Jupiter-like planets, although probably formed far away, quickly move to orbits close around their .

The discovery, published in the Monthly Notices of the Royal Astronomical Society (MNRAS) by Oxford University Press, will help astronomers better understand how planetary systems like our own solar system form and evolve into maturity.

Dr Scott Gregory, STFC Ernest Rutherford Fellow in the School of Physics and Astronomy at St Andrews, and co-author of the study said: "These infant stars are the equivalent of one-week-old, if their expected 10-billion-year lifetime is scaled down to the span of a human life."

In our solar system, rocky planets like Earth, or Mars, are found near the Sun whereas giant planets like Jupiter and Saturn orbit much further out.

In 1995 a giant planet was discovered sitting very close to its . Since then, astronomers have demonstrated that such planets must form in the outer regions of the protoplanetary disc – the matrix from which both the central star and surrounding planets are born – then migrate inwards and yet avoid falling into their host star.

This could happen either very early in their lives, when still embedded within their primordial disc, or much later, once multiple planets are formed and mutually interact in a rather unstable choreography – with some being pushed inwards at the immediate vicinity of their stars.

Young gas giants fly close to their suns
Formation of stars and their planets in the Taurus nursery as seen at millimeter wavelengths by the APEX telescope in Chile. Credit: ESO?APEX

The research team has now discovered preliminary evidence that the first of these two scenarios is occurring.

Professor Moira Jardine, Professor of Astronomy at the University of St Andrews, and co-author, said: "Although more data are required for a definite validation, this first result is quite promising and clearly demonstrates that the technique our team has devised is powerful enough to solve the puzzling question of how hot Jupiters form, and end up close to their host stars."

The discovery was observed through the Canada-France-Hawaii Telescope (CFHT) on Mauna Kea, a dormant volcano on the island of Hawaii. Looking at newly-born stars in the Taurus stellar nursery about 450 light-years away from us, the team showed that the latest baby star they scrutinised, nicknamed V830 Tau, exhibits signatures that closely resemble those caused by a 1.4 Jupiter mass planet orbiting 15 times closer to its host star than the Earth does to the Sun.

Young gas giants fly close to their suns
The primordial disc-like matrix from which stars and their planets are born, as observed by the Atacama Large Millimetre Array (ALMA) at radio wavelengths for one baby star in the Taurus nursery. The newly-born star is in the middle whereas the forming planets are further out. Credit: ALMA/ESO/NAOJ/NRAO

Although potentially very informative about planet formation, young stars are extremely challenging to observe.

To address this issue, the team initiated a survey aimed at mapping the surfaces of baby stars and at looking for the potential presence of hot Jupiters, which, although first detected 20 years ago, are still enigmatic bodies.

In the case of V830 Tau, the authors had to accurately model the magnetic field and spots in order to clean out their polluting effect and discover the much weaker signal from the putative giant planet.

Explore further: Jupiter twin discovered around solar twin

More information: "Magnetic activity and hot Jupiters of young Suns: the weak-line T Tauri stars V819 Tau and V830 Tau." [SSA]

Related Stories

Jupiter twin discovered around solar twin

July 15, 2015

Astronomers have used the ESO 3.6-metre telescope to identify a planet just like Jupiter orbiting at the same distance from a Sun-like star, HIP 11915. According to current theories, the formation of Jupiter-mass planets ...

A curious family of giant exoplanets

May 25, 2015

There are 565 exoplanets currently known that are as massive as Jupiter or bigger, about one third of the total known, confirmed exoplanet population. About one quarter of the massive population orbits very close to its star, ...

'Hot Jupiters' provoke their own host suns to wobble

September 11, 2014

Blame the "hot Jupiters." These large, gaseous exoplanets (planets outside our solar system) can make their suns wobble when they wend their way through their own solar systems to snuggle up against their suns, according ...

Star Tau Boo's baffling magnetic flips

July 4, 2013

( —The first observations of the complete magnetic cycle of a star other than the Sun are proving a puzzle to astronomers. Tau Boötis, known as Tau Boo (τ Boo), is a yellowish star that is a little brighter than ...

First planet found around solar twin in star cluster

January 15, 2014

Astronomers have used ESO's HARPS planet hunter in Chile, along with other telescopes around the world, to discover three planets orbiting stars in the cluster Messier 67. Although more than one thousand planets outside the ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

The taming of the light screw

March 22, 2019

DESY and MPSD scientists have created high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might ...


Adjust slider to filter visible comments by rank

Display comments: newest first

SnowballSolarSystem _SSS_
1 / 5 (4) Sep 09, 2015
Very-early galaxies have taken cosmologists by surprise for the EXACT same reason that very-young hot Jupiters have taken planetary scientists by surprise: they both form by gravitational instability, galaxies during the Epoch of Big Bang Nucleosynthesis, and hot Jupiters during the formation of second hydrostatic cores (SHSCs) in protostars.

I suggest that runaway gravitational collapse caused by endotermic dissociation of hydrogen in protostar cores in the process of forming SHSCs isolates high angular momentum outer layers which may condense by GI to form hot Jupiters in low hot orbits with no inward planet migration.
4.3 / 5 (6) Sep 10, 2015
If we look at the ideal gas law PV=nRT, there may be a temperature decrease due to an endothermic reaction, but converting H2 to 2H also doubles n, and since they are both on the same side of the equation they will mostly cancel out. This will leave the pressure x volume relatively untouched. Collapse conjures images of volume decreasing, but this will be counteracted by a pressure increase. Of course hydrogen molecules and atoms are not exactly ideal, but this simple exercise suggests your idea is full of hot air and doesn't lead to gravitational collapse. Would love to see you back up yourself up with a reference or two.
Sep 10, 2015
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.