Quantum computing will bring immense processing possibilities

September 2, 2015 by Robert Young, The Conversation
D-Wave

The one thing everyone knows about quantum mechanics is its legendary weirdness, in which the basic tenets of the world it describes seem alien to the world we live in. Superposition, where things can be in two states simultaneously, a switch both on and off, a cat both dead and alive. Or entanglement, what Einstein called "spooky action-at-distance" in which objects are invisibly linked, even when separated by huge distances.

But weird or not, is approaching a century old and has found many applications in daily life. As John von Neumann once said: "You don't understand quantum mechanics, you just get used to it." Much of electronics is based on quantum physics, and the application of quantum theory to computing could open up huge possibilities for the complex calculations and data processing we see today.

Imagine a computer processor able to harness super-position, to calculate the result of an arbitrarily large number of permutations of a complex problem simultaneously. Imagine how entanglement could be used to allow systems on different sides of the world to be linked and their efforts combined, despite their physical separation. Quantum computing has immense potential, making light work of some of the most difficult tasks, such as simulating the body's response to drugs, predicting weather patterns, or analysing big datasets.

Such processing possibilities are needed. The first transistors could only just be held in the hand, while today they measure just 14 nm – 500 times smaller than a red blood cell. This relentless shrinking, predicted by Intel founder Gordon Moore as Moore's law, has held true for 50 years, but cannot hold indefinitely. Silicon can only be shrunk so far, and if we are to continue benefiting from the performance gains we have become used to, we need a different approach.

Quantum fabrication

Advances in have made it possible to mass-produce quantum-scale semiconductors – electronic circuits that exhibit quantum effects such as super-position and entanglement.

Replica of the first ever transistor, manufactured at Bell Labs in 1947. Credit: Lucent Technologies

The image, captured at the atomic scale, shows a cross-section through one potential candidate for the building blocks of a quantum computer, a semiconductor nano-ring. Electrons trapped in these rings exhibit the strange properties of , and semiconductor fabrication processes are poised to integrate these elements required to build a quantum computer. While we may be able to construct a quantum computer using structures like these, there are still major challenges involved.

In a classical computer processor a huge number of transistors interact conditionally and predictably with one another. But quantum behaviour is highly fragile; for example, under quantum physics even measuring the state of the system such as checking whether the switch is on or off, actually changes what is being observed. Conducting an orchestra of quantum systems to produce useful output that couldn't easily by handled by a classical computer is extremely difficult.

But there have been huge investments: the UK government announced £270m funding for quantum technologies in 2014 for example, and the likes of Google, NASA and Lockheed Martin are also working in the field. It's difficult to predict the pace of progress, but a useful quantum computer could be ten years away.

The basic element of is known as a qubit, the quantum equivalent to the bits used in traditional computers. To date, scientists have harnessed to represent qubits in many different ways, ranging from defects in diamonds, to semiconductor nano-structures or tiny superconducting circuits. Each of these has is own advantages and disadvantages, but none yet has met all the requirements for a quantum computer, known as the DiVincenzo Criteria.

The most impressive progress has come from D-Wave Systems, a firm that has managed to pack hundreds of qubits on to a small chip similar in appearance to a traditional processor.

Quantum circuitry. Credit: Paul Koenraad/TU Eindhoven, Author provided
Quantum secrets

The benefits of harnessing aren't limited to computing, however. Whether or not quantum computing will extend or augment digital computing, the same can be harnessed for other means. The most mature example is quantum communications.

Quantum physics has been proposed as a means to prevent forgery of valuable objects, such as a banknote or diamond, as illustrated in the image below. Here, the unusual negative rules embedded within prove useful; perfect copies of unknown states cannot be made and measurements change the systems they are measuring. These two limitations are combined in this quantum anti-counterfeiting scheme, making it impossible to copy the identity of the object they are stored in.

The concept of quantum money is, unfortunately, highly impractical, but the same idea has been successfully extended to communications. The idea is straightforward: the act of measuring quantum super-position states alters what you try to measure, so it's possible to detect the presence of an eavesdropper making such measurements. With the correct protocol, such as BB84, it is possible to communicate privately, with that privacy guaranteed by fundamental laws of physics.

Adding a quantum secret to a standard barcode prevents tampering or forgery of valuable goods. Credit: Robert Young, Author provided

Quantum communication systems are commercially available today from firms such as Toshiba and ID Quantique. While the implementation is clunky and expensive now it will become more streamlined and miniaturised, just as transistors have miniaturised over the last 60 years.

Improvements to nanoscale fabrication techniques will greatly accelerate the development of quantum-based technologies. And while useful quantum computing still appears to be some way off, it's future is very exciting indeed.

Explore further: Paving the way for a faster quantum computer

Related Stories

Paving the way for a faster quantum computer

August 11, 2015

A team of physicists from the University of Vienna and the Austrian Academy of Sciences have demonstrated a new quantum computation scheme in which operations occur without a well-defined order. The researchers led by Philip ...

A little light interaction leaves quantum physicists beaming

August 24, 2015

A team of physicists at the University of Toronto (U of T) have taken a step toward making the essential building block of quantum computers out of pure light. Their advance, described in a paper published this week in Nature ...

Quantum computing advance locates neutral atoms

August 12, 2015

For any computer, being able to manipulate information is essential, but for quantum computing, singling out one data location without influencing any of the surrounding locations is difficult. Now, a team of Penn State physicists ...

Quantum teleportation on a chip

April 1, 2015

The core circuits of quantum teleportation, which generate and detect quantum entanglement, have been successfully integrated into a photonic chip by an international team of scientists from the universities of Bristol, Tokyo, ...

The road to quantum computing

May 15, 2014

Anticipating the advent of the quantum computer, related mathematical methods already provide insight into conventional computer science.

Recommended for you

Pushing the extra cold frontiers of superconducting science

October 18, 2018

Measuring the properties of superconducting materials in magnetic fields at close to absolute zero temperatures is difficult, but necessary to understand their quantum properties. How cold? Lower than 0.05 Kelvin (-272°C).

The big problem of small data: A new approach

October 18, 2018

Big Data is all the rage today, but Small Data matters too! Drawing reliable conclusions from small datasets, like those from clinical trials for rare diseases or in studies of endangered species, remains one of the trickiest ...

7 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

ichisan
1 / 5 (1) Sep 02, 2015
Schrodinger was actually making fun of the whole superposition thing. It's pseudoscientific nonsense.
kochevnik
3 / 5 (2) Sep 02, 2015
Schrodinger was actually making fun of the whole superposition thing. It's pseudoscientific nonsense.
And then you woke up
Max5000
not rated yet Sep 03, 2015
Actually Microsoft and many others are all investing in the Dutch based Qutech quantum technology institute.

Thats because Dutch tech universities have been leading the way on many important levels of quantum research. Just this week yet another big breakthrough on this was made in the Netherlands: http://www.nature...-1.18255

The Dutch government has now also provided Qutech 135 Million Euro / 150 Million Dollars to help them get much closer to a full scale quantum computer:

http://www.dutchn...omputer/

katesisco
not rated yet Sep 03, 2015
I looked at the paper above and still think Miles Mathis who has papers on the net is justified in his position that the photon spun up is everything. http://milesmathi...pro.html
How can we claim discoveries about a quantum world when we cant even explain why there are monoatomc elements that do not bond?
viko_mx
not rated yet Sep 03, 2015
Quantum mechanics describe physical reality with statistical equations which hide the details about particle behavior and interactions. This theory in fact recognize simple fact that our physical reality is unknowable on the fundamental level.
docile
Sep 03, 2015
This comment has been removed by a moderator.
docile
Sep 03, 2015
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.