Physicists create exotic states that could lead to new kinds of sensors and optical devices

September 9, 2015, Massachusetts Institute of Technology
A schematic drawing of how a ring of exceptional points (shown in white) can be spawned from a Dirac point (a dot), and thus change the dispersion from the normal, widely known conical shape into an exotic lantern-like shape. Credit: MIT

The Dirac cone, named after British physicist Paul Dirac, started as a concept in particle and high-energy physics and has recently became important in research in condensed matter physics and material science. It has since been found to describe aspects of graphene, a two dimensional form of carbon, suggesting the possibility of applications across various fields.

Now physicists at MIT have found another unusual phenomenon produced by the Dirac cone: It can spawn a phenomenon described as a "ring of exceptional points." This connects two fields of research in physics and may have applications in building powerful lasers, precise optical sensors, and other devices.

The results are published this week in the journal Nature by MIT postdoc Bo Zhen, Yale University postdoc Chia Wei Hsu, MIT physics professors Marin Soljači? and John Joannopoulos, and five others.

This work represents "the first experimental demonstration of a ring of exceptional points," Zhen says, and is the first study that relates research in exceptional points with the physical concepts of parity-time symmetry and Dirac cones.

Individual exceptional points are a peculiar phenomenon unique to an unusual class of physical systems that can lead to counterintuitive phenomena. For example, around these points, opaque materials may seem more transparent, and light may be transmitted only in one direction. However, the practical usefulness of these properties is limited by absorption loss introduced in the materials.

A schematic picture showing the conical dispersion of a Dirac cone being deformed into a new hour-glass-like shape due to radiation. Credit: MIT

The MIT team used a nanoengineered material called a to produce the exceptional ring. This new ring of exceptional points is different from those studied by other groups, making it potentially more practical, the researchers say.

"Instead of absorption loss, we adopt a different loss mechanism—radiation loss—which does not affect the device performance," Zhen says. "In fact, radiation loss is useful and is necessary in devices like lasers."

This phenomenon could enable creation of new kinds of optical systems with novel features, the MIT team says.

"One important possible application of this work is in creating a more powerful laser system than existing technologies allow," Soljači? says. To build a more powerful laser requires a bigger lasing area, but that introduces more unwanted "modes" for light, which compete for power, limiting the final output.

"Photonic crystal surface-emitting lasers are a very promising candidate for the next generation of high-quality, high-power compact laser systems," Soljači? says, "and we estimate we can improve the output power limit of such lasers by a factor of at least 10."

"Our system could also be used for high-precision detectors for biological or chemical materials, because of its extreme sensitivity," Hsu says. This improved sensitivity is due to another exotic property of the exceptional points: Their response to perturbations is not linear to the perturbation strength.

Normally, Hsu says, it becomes very difficult to detect a substance when its concentration is low. When the concentration of the target substance is reduced by a million times, the overall signal also decreases by a million times, which can make it too small to detect.

"But at an exceptional point, it's not linear anymore," Hsu says, "and the signal goes down by only 1,000 times, providing a much bigger response that can now be detected."

Explore further: Weyl points: Long-sought phenomenon finally detected

More information: Spawning rings of exceptional points out of Dirac cones, DOI: 10.1038/nature14889

Related Stories

Weyl points: Long-sought phenomenon finally detected

July 16, 2015

Part of a 1929 prediction by physicist Hermann Weyl—of a kind of massless particle that features a singular point in its energy spectrum called the "Weyl point,"—has finally been confirmed by direct observation for the ...

New diamond laser 20 times more powerful

August 13, 2015

Researchers from the MQ Photonics Research Centre joined with fiber laser experts from the Fraunhofer Institute for Applied Optics and Precision Engineering in Jena, Germany to demonstrate a diamond laser 20 times more powerful ...

Laser physics upside down

July 15, 2014

At the Vienna University of Technology a system of coupled lasers has been created which exhibits truly paradoxical behaviour: An increase in energy supply switches the lasers off, reducing the energy can switch them on.

Recommended for you

Gravitational wave detectors to search for dark matter

August 16, 2018

Gravitational wave detectors might be able to detect much more than gravitational waves. According to a new study, they could also potentially detect dark matter, if dark matter is composed of a particular kind of particle ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 10, 2015
Order of magnitude improvement in laser power. So now in other research we look for solid state lasers scaled to 100kW. Now we can think of scaling to a MegaWatt or better. Same with superconducting ribbon conductors to improve fusion efficiency and power in tokomaks, spheromaks, DPF's and other fusion devices. Seems all these discoveries are enabling tech pointing the way to self sustaining fusion sooner then we thought if we put them together.
Sep 10, 2015
This comment has been removed by a moderator.
Sep 10, 2015
This comment has been removed by a moderator.
Sep 10, 2015
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.