Magnetism at nanoscale

August 3, 2015
Physicists at the U.S. Department of Energy's Ames Laboratory are using an NV-magnetoscope to make use of nitrogen-vacancy centers in diamond to sense extremely weak magnetic fields in nano- and mesoscale magnetic materials.

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique optical magnetometer to probe magnetism at the nano- and mesoscale.

The device, called a NV-magnetoscope, makes use of the unique quantum mechanical properties of nitrogen-vacancy (NV) centers in diamond. The low temperature NV-magnetoscope setup incorporates a confocal microscope (CFM) and an atomic-force scanning microscope (AFM). The NV-magnetoscope will be able to sense the extremely of just a handful of electrons with the spatial resolution of about 10 nanometers.

"We want to determine magnetic textures more precisely than ever before, at smaller scales than ever before," said Ames Laboratory physicist Ruslan Prozorov. "Our hope is to understand nano- and mesoscale magnetism, learn how to control it and, eventually, use that to create a new generation of technologies."

NV Centers

Usually, diamonds are most valued when they're perfect and big. But physicists see special value in diamonds' tiny flaws: a certain kind of imperfection, called a nitrogen vacancy (NV) center, serves as a very sensitive sensor of the magnetic field exactly at the location of the NV center. NV centers are created when a carbon atom is substituted with a nitrogen atom. When there is a missing atom or a "vacancy" nearby the nitrogen atom, this forms the stable pair called the nitrogen-vacancy center.

What makes NV centers so useful? Physicists know a lot about how NV centers work. (In fact, Ames Laboratory is home to one of the world's leading experts on NV centers, theoretical physicist Viatcheslav Dobrovitski.) Scientists know how much energy it takes to push electrons from the lowest energy, or ground state, to an excited state and, more importantly, how much energy will be released in form of a red photon when the electron relaxes back to the low-energy level. NV centers' well-defined quantum energy levels are extremely sensitive to a magnetic field. This sensitivity enables the NV-magnetoscope to detect very small magnetic fields – such as that produced by nano- and mesoscale magnetic materials, for example – by reading optical fluorescence emitted by the excited NV centers.

Green Laser Light Excites the NV Center

"Electrons start at low-energy quantum states. And the green laser light 'kicks' them to a high excited state. The rules of quantum mechanics say that those electrons must return back to the lower energy level. If an electron was excited from a non-magnetic level, it always emits red light. However, if it was excited from one of the low-energy magnetic levels, it most likely relaxes back without any emission.

Microwave radiation is used to scramble electrons between low-energy magnetic and non-magnetic states, reaching maximum population of the magnetic states when the interlevel energy difference matches microwave energy. Therefore, by scanning microwave frequency, red fluorescence will cause double-dip spectra, corresponding to two magnetic energy levels, split by the magnetic field (called Zeeman splitting). The distance between the dips is proportional to the magnetic field at the location of an NV center," said Prozorov

Detector Counts Red Photons

As excited electrons lose energy and return back to the low energy state, they emit red light. A detector counts the number of red photons.

NV Centers "Feel" Sample's Magnetic Fields

A roughly 100-nanometer-long diamond containing NV centers is attached to the AFM tip. The confocal microscope focuses on a single NV center, collecting red photons only from one tiny area while blocking out outside "noise." The sample of interest is scanned below the NV center. The NV center "feels" the variation of magnetic fields produced by the sample.

"When the sample of interest is brought close enough to an NV center, the sample's magnetic field is extended to the location of the NV center and affects the center's quantum levels. By accurately moving the sample in two dimensions close to the NV center, we can reconstruct the intensity map produced by the sample. This, in turn, gives access to the magnetic properties of the sample itself," said Prozorov.

Explore further: Microfluidic diamond sensor: Moving bio particles magnetically

Related Stories

A qubit candidate shines brighter

December 29, 2014

In the race to design the world's first universal quantum computer, a special kind of diamond defect called a nitrogen vacancy (NV) center is playing a big role. NV centers consist of a nitrogen atom and a vacant site that ...

Quantum engineering

August 13, 2014

It can be difficult to distinguish between basic and applied research in the nascent field of quantum engineering. One person's exploration of quantum systems like atoms and electrons yields another's building block for quantum ...

Nanoscale MRI being developed

February 1, 2013

(—Two independent groups of scientists in the U.S. and Germany have reduced magnetic resonance imaging (MRI) down to the nanoscale, which may enable them in the future to non-destructively detect and image small ...

Recommended for you

Flexible ferroelectrics bring two material worlds together

January 17, 2017

Until recently, "flexible ferroelectrics" could have been thought of as the same type of oxymoronic phrase. However, thanks to a new discovery by the U.S. Department of Energy's (DOE) Argonne National Laboratory in collaboration ...

First-ever X-ray image capture of material defect process

January 17, 2017

From blacksmiths forging iron to artisans blowing glass, humans have for centuries been changing the properties of materials to build better tools – from iron horseshoes and swords to glass jars and medicine vials.

Theory lends transparency to how glass breaks

January 16, 2017

Over time, when a metallic glass is put under stress, its atoms will shift, slide and ultimately form bands that leave the material more prone to breaking. Rice University scientists have developed new computational methods ...

A novel way to put flame retardant in a lithium ion battery

January 16, 2017

(—A team of researchers at Stanford University has found a novel way to introduce flame retardant into a lithium ion battery to prevent fires from occurring. In their paper published in the journal Science Advances, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.