NASA image: Stellar sparklers that last

July 3, 2015, NASA
This new composite image of stellar cluster NGC 1333 combines X-rays from NASA's Chandra X-ray Observatory (pink); infrared data from NASA's Spitzer Space Telescope (red); and optical data from the Digitized Sky Survey and the National Optical Astronomical Observatories' Mayall 4-meter telescope on Kitt Peak near Tucson, Arizona. The Chandra data reveal 95 young stars glowing in X-ray light, 41 of which had not been seen previously using Spitzer because they lacked infrared emission from a surrounding disk. Credit: NASA/CXC/JPL-Caltech/NOAO/DSS

While fireworks only last a short time here on Earth, a bundle of cosmic sparklers in a nearby cluster of stars will be going off for a very long time. NGC 1333 is a star cluster populated with many young stars that are less than 2 million years old—a blink of an eye in astronomical terms for stars like these expected to burn for billions of years.

This new composite image combines X-rays from NASA's Chandra X-ray Observatory (shown in pink) with infrared data from NASA's Spitzer Space Telescope (shown in red) as well as optical data from the Digitized Sky Survey and the National Optical Astronomical Observatories' Mayall 4-meter telescope on Kitt Peak (red, green, blue). The Chandra data reveal 95 young stars glowing in X-ray light, 41 of which had not been seen previously using Spitzer because they lacked infrared emission from a surrounding disk.

To make a detailed study of the X-ray properties of young stars, a team of astronomers, led by Elaine Winston from the University of Exeter, United Kingdom, analyzed the Chandra X-ray data of both NGC 1333, located about 780 light-years from Earth, and the Serpens cloud, a similar cluster of young stars about 1,100 light-years away. They then compared the two datasets with observations of the in the Orion Nebula Cluster, perhaps the most well-studied young in the Milky Way galaxy.

The researchers found that the X-ray brightness of the stars in NGC 1333 and the Serpens cloud depends on the total brightness of the stars across the electromagnetic spectrum, as found in previous studies of other clusters. They also found that the X-ray brightness mainly depends on the size of the star. In other words, the bigger the stellar sparkler, the brighter it will glow in X-rays.

These results were published in the July 2010 issue of the Astronomical Journal.

Explore further: NGC 602: Taken under the 'wing' of the small magellanic cloud

Related Stories

Cygnus OB2: Probing a nearby stellar cradle

November 8, 2012

(Phys.org)—The Milky Way and other galaxies in the universe harbor many young star clusters and associations that each contain hundreds to thousands of hot, massive, young stars known as O and B stars. The star cluster ...

NGC 2367: Buried in the heart of a giant

July 1, 2015

This rich view of an array of colorful stars and gas was captured by the Wide Field Imager camera, on the MPG/ESO 2.2-meter telescope at ESO's La Silla Observatory in Chile. It shows a young open cluster of stars known as ...

White dwarf may have shredded passing planet

April 17, 2015

The destruction of a planet may sound like the stuff of science fiction, but a team of astronomers has found evidence that this may have happened in an ancient cluster of stars at the edge of the Milky Way galaxy.

Image: The Heart of a Rose

September 8, 2010

(PhysOrg.com) -- This composite image shows the Rosette star formation region, located about 5,000 light years from Earth.

Recommended for you

After a reset, Сuriosity is operating normally

February 23, 2019

NASA's Curiosity rover is busy making new discoveries on Mars. The rover has been climbing Mount Sharp since 2014 and recently reached a clay region that may offer new clues about the ancient Martian environment's potential ...

Study: With Twitter, race of the messenger matters

February 23, 2019

When NFL player Colin Kaepernick took a knee during the national anthem to protest police brutality and racial injustice, the ensuing debate took traditional and social media by storm. University of Kansas researchers have ...

Solving the jet/cocoon riddle of a gravitational wave event

February 22, 2019

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.