Microfabricated device allows evaluation of the efficacy, toxicity of pro-drugs

July 7, 2015, World Scientific Publishing
A microfabricated device developed by the Massachusetts General Hospital Center for Engineering in Medicine is able to analyze the effects of pro-drugs -- substances transformed within the liver into therapeutic agents -- on cancer cells. The two-chamber microscale platform enables the culture of liver cells called hepatocytes and tumor cells in close proximity and in small amounts of supportive media. The microscale environment leads to the rapid accumulation of greater quantities of the desired metabolite and detection of its toxic effect on cancer cells. Credit: Shyam Sundhar Bale, Ph.D., MGH Center for Engineering in Medicine.

A team of researchers from the Massachusetts General Hospital Center for Engineering in Medicine (MGH-CEM) has developed a novel approach that dramatically simplifies the evaluation of the liver's drug-metabolizing activity and the potential toxic effects of the products of that activity on other organs. Their report appears in the forthcoming issue of the journal Technology.

"The liver plays a central role in drug metabolism, a process that has been exploited in the development of pro-drugs that are transformed by the liver into the ultimate therapeutic agent," says Martin Yarmush, MD, PhD, director of the MGH-CEM and the paper's senior author. "Currently, there is a large effort underway to create systems that enable evaluation of organ-to-organ interaction in the context of drug efficacy and toxicity. Most investigators in this field use approaches that rely on the flow of fluids between organs to achieve this interaction. But these systems can be cumbersome, with limitations in speed and undesirable excessive dilution. Our approach relies on capturing organ-to-organ interactions in a simple, static system that overcomes these limitations."

The authors describe development of a microfabricated device that enables the separate culture of primary liver cells and cancer cells. The device contains two microchambers separated by a tissue-culture membrane allowing very small amounts of the two different cell types to be cultured within the same device. The team demonstrated the efficacy of the system by analyzing the metabolic conversion in liver cells of Tegafur, a chemotherapeutic pro-drug, into the toxic metabolite 5-fluorouracil and its subsequent effect on . The simplified platform eliminates the need for pumping and tubing connections and provides a novel, easy-to-use platform for studying , toxicity and interactions between multi-tissue systems, serving as a robust, valuable tool for screening drugs for toxic effects.

"This work is significant because many commercially available "organ-on-a-chip" devices are not truly microscale, and therefore can totally miss important biological and toxicological phenomena simply because sample volumes and dimensions are too large. This paper clearly demonstrates that critical, subtle interactions can be detected if the device is designed and fabricated properly," says Shyam Sundhar Bale, PhD, a research fellow in the MGH-CEM and lead author of the paper. "Our method takes advantage of a microenvironment in which the cells can be cultured in much smaller quantities of supportive media than in traditional culture methods, enabling the accumulation of higher concentrations of the metabolized product. This methodology is particularly attractive in cases where in the toxic metabolite that is formed is either short lived or is processed further into other, non-toxic components."

Co-senior author Rohit Jindal, PhD, of MGH-CEM, adds, "The microfabrication methods applied in this study are readily amenable to designing a device in which multiple two-chamber wells could be operated at the same time, dramatically increasing processing speed, that would be no larger than a standard, 96-well culture plate." Jindal is an instructor in Surgery at Harvard Medical School.

Explore further: Device allows evaluation of the efficacy, toxicity of drugs metabolized through the liver

More information: www.worldscientific.com/doi/ab … 42/S2339547815200034

Related Stories

Mimicking the body on a chip for new drug testing

June 10, 2015

Scientists in an EU project have developed a microfluidic chip that simultaneously analyses the reactions of several human organ tissues when they come into contact with candidates for new drugs. The ground-breaking device ...

A breath of fresh air could improve drug toxicity screening

September 2, 2009

A team led by Massachusetts General Hospital (MGH) researchers has developed an innovative way to culture liver cells for drug toxicity screening. In a report to be published in Proceedings of the National Academy of Sciences ...

Recommended for you

Using bacteria to create a water filter that kills bacteria

January 18, 2019

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas, which is why access to clean water is one of the National Academy ...

Hand-knitted molecules

January 18, 2019

Molecules are usually formed in reaction vessels or laboratory flasks. An Empa research team has now succeeded in producing molecules between two microscopically small, movable gold tips – in a sense as a "hand-knitted" ...

Artificially produced cells communicate with each other

January 18, 2019

Friedrich Simmel and Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, ...

This computer program makes pharma patents airtight

January 17, 2019

Routes to making life-saving medications and other pharmaceutical compounds are among the most carefully protected trade secrets in global industry. Building on recent work programming computers to identify synthetic pathways ...

3-D culturing hepatocytes on a liver-on-a-chip device

January 17, 2019

Liver-on-a-chip cell culture devices are attractive biomimetic models in drug discovery, toxicology and tissue engineering research. To maintain specific liver cell functions on a chip in the lab, adequate cell types and ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.