Cytoskeletons shaking hands

June 3, 2015, University of Helsinki
Cultured human osteosarcoma cell, where actin filaments are visualized in red and vimentin intermediate filaments in green.

Animal cells harbor three types of cytoskeletal elements: actin filaments, intermediate filaments and microtubules. Despite their name, cytoskeletons are very dynamic structures, which undergo rapid reorganization in cells and thus contribute to numerous cellular processes, such as morphogenesis, motility, intracellular transport, and cell division. Consequently, defects in cytoskeletal structures lead to various diseases, including cancer and neurological disorders.

Different cytoskeletal systems do not function in isolation, but collaborate with each other in cells. Post-doctoral researcher Yaming Jiu working at the Institute of Biotechnology, University of Helsinki has now revealed that cytoplasmic interact with specific contractile actin filament structures called arcs.

"Actin arcs transport intermediate filaments from cell periphery toward the nucleus. Consequently, disruption of actin arcs led to an abnormal spreading of the intermediate filament network toward the cell periphery and associated defects in cell morphogenesis. Intermediate filaments resist the movement of arcs, and their depletion led to abnormalities in the shape of the arc-rich leading edge of motile cells," describes research director Pekka Lappalainen.

Explore further: New mechanism controlling proper organization of the muscle contractile units indentified

More information: "Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers." Cell Press 28 May 2015. DOI: dx.doi.org/10.1016/j.celrep.2015.05.008

Related Stories

Skeleton key for cancer metastasis

April 26, 2010

Cancer cells need all three of their cytoskeletons—actin, microtubules, and intermediate filaments—to metastasize, according to a study published online on April 26 in the Journal of Cell Biology.

Researchers uncover secrets of internal cell fine-tuning

July 29, 2014

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

Atomic structure of key muscle component revealed

July 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components within them ...

A new mechanism affecting cell migration found

October 15, 2014

Cell migration is important for development and physiology of multicellular organisms. During embryonic development individual cells and cell clusters can move over relatively long distances, and cell migration is also essential ...

Recommended for you

When more women make decisions, the environment wins

March 21, 2019

When more women are involved in group decisions about land management, the group conserves more—particularly when offered financial incentives to do so, according to a new University of Colorado Boulder study published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.