What it took to get the Hubble Space Telescope off the ground

April 22, 2015 by C Robert O'dell, The Conversation
Hubble in orbit. Credit: NASA

Iconic images of astronomical pillars of gas and dust, views of galaxies soon after they were formed, an accelerating universe driven by Dark Energy… "give us more!" say the public and the taxpayers. The Hubble Space Telescope is undoubtedly one of the most popular science projects today. It was not always thus.

Laying the groundwork

With its origins dating back to a time when almost all astronomers used photographic plates to record images at , the idea of an ambitious and expensive observatory in space was not a popular one. The most influential astronomers of the 1960s thought it better to spend the money on 15 copies of the 200-inch giant on Palomar Mountain, rather than gamble all on a single telescope in space that was not as large.

Nevertheless, NASA held out the Hubble as a long-term goal. By the early 1970s, things began to change as preliminary designs for the spacecraft were generated and my colleagues were educated about the Hubble's potential.

This space-based telescope would be able to make images of a step up in quality that was as great as Galileo's application of the first astronomical telescope was to the view with an unaided eye. It would detect stars and galaxies that lay beyond the limit of faintness of giant ground-based observatories. I left my professorship at the University of Chicago in 1972 to become the scientific leader of the proposed project and considered the gathering of scientific support my most important immediate job.

Finally the idea caught on and scientists and groups from most of the major observatories in the US and Europe became involved with building the observatory, its individual scientific instruments, and planning the science to be done. From widespread skepticism, the situation changed to astronomers not wanting to miss the boat.

The first few years were spent in preliminary design of many types of scientific instruments, using competitively selected scientists. As we moved into the selection of teams to build the instruments, we held a new competition. The teams who had proposed the most modern approaches were selected, leaving behind some people involved since the earliest studies.

Palomar Observatory, firmly rooted to the ground. Credit: Tylerfinvold
Hardware began to be built in 1977, even before the Hubble was funded by Congress in fiscal year 1978. Preparations proceeded on the bumpy and expensive path that would lead to its being ready for launch in late 1986. But then the space shuttle Challenger accident occurred and several years of delay ensued as the Space Transportation System came back into operation. Hubble eventually hitched a ride to space onboard Space Shuttle Discovery in April, 1990.

Bumpy ride at first

Within a few weeks it looked like those early skeptics were the wise ones amongst us. The telescope's primary mirror had been created with great precision and measured with unprecedented accuracy; but the measuring equipment was misaligned. That error resulted in a mirror that formed a degraded image. Instead of a single sharp core where 90% of the light focused, there was a sharp core with 20% of the light surrounded by a halo. We were pilloried, investigated, and a subject of mean-spirited cartoons. Techno-Turkey was a popular description.

On the right is part of the first image taken with NASA’s Hubble Space Telescope’s Wide Field/Planetary Camera. Compare with a ground-based picture from Las Campanas, Chile, Observatory of the same region of the sky. Credit: Right: NASA, ESA, and STScI Left: E. Persson (Las Campanas Observatory, Chile)/Observatories of the Carnegie Institution of Washington

However, researchers developed computer programs to accurately remove the halo and the scientific value of the resulting images began to be appreciated. Over the next several years the articles on the Hubble changed from the initial subjects of "how can such a major screw-up occur," to lead-ins of "the crippled Hubble has shown this interesting scientific result," until finally the science stories would simply end with a mention in the last paragraph that the Hubble was working with a flawed mirror, but it was expected that things would be improved after the first servicing mission.

And improve they did with the servicing mission of December 1993. That success reflected the finest hours (years actually) of NASA and Aerospace engineers and managers, the Space Telescope Science Institute and the Astronaut Corps. The scientific instruments were housed in easily changed-out boxes. An empty instrument box had been made before the 1990 launch to be used in case one of the scientific instruments was not ready in time.

This box was altered to house a set of mirrors that would correct the convergent light beam coming from the flawed primary mirror so it would reach the scientific instruments in pristine condition. A backup imaging camera was installed that had the correction figured into the internal mirrors that were already part of its design. The Hubble was saved and was actually producing images better than we had publicly predicted.

The Hubble Space Telescope was designed to be able to probe deeper into the universe’s past than anything based on the ground. Credit: NASA
Back in business

Happily, the rest is history.

The four additional servicing missions have replaced failed components, repaired instruments in-orbit, and replaced support-equipment (for example the data recorders and computers) and , so that today's Hubble is more powerful than ever. Without the ability to conduct additional servicing missions, its lifetime will be limited. Whatever time we still have will be welcome, but in any event, the Hubble Space Telescope must be considered a triumph.

Polishing Hubble’s eight-foot diameter mirror, designed to focus the faint light the telescope would encounter in space. Credit: NASA Marshall Space Flight Center

It has been gratifying to be on the ground floor of the Hubble project and to shape the direction that it's taken. Engineering images of my favorite astronomical object, the Orion Nebula, were made before that first servicing mission. I was given access to those and in their analysis discovered the objects now called proplyds. These are the circumstellar material and proto-planetary disks surrounding very young stars (ages much less than one million years).

These discoveries started a series of investigations using the Hubble that continues today. I've just submitted a paper on the most recent of these for publication. It exploits the fact that the long difference in time between the earliest and most recent images allows us to see changes in the nebula and to trace the matter being expelled from the youngest of the stars in Orion, thus illuminating the process by which stars and their planets are formed.

It's just one of the discoveries we certainly wouldn't have made by now without a like the Hubble.

This comparison image of the core of the galaxy M100 shows the dramatic improvement in Hubble Space Telescope’s view of the universe after the first Hubble Servicing Mission in December 1993. Credit: NASA
The iconic Pillars of Creation image taken by the Hubble. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA), CC BY

Explore further: Image: Claude Nicollier repairing Hubble

Related Stories

Image: Claude Nicollier repairing Hubble

April 21, 2015

This week marks the 25th anniversary of the launch of the Hubble space telescope. Hubble was designed to be maintained and repaired by astronauts and since its launch in 1990 five Space Shuttle missions made visits.

Hubble Space Telescope turning 25 this month

April 16, 2015

The achievements of those working on the Hubble Space Telescope (a joint U.S. and European effort) will be noted around the world next week on April 24th, the twenty fifth anniversary of its launch into orbit. Astrophysicist ...

Recommended for you

Female golden snub-nosed monkeys share nursing of young

February 21, 2019

An international team of researchers including The University of Western Australia and China's Central South University of Forestry and Technology has discovered that female golden snub-nosed monkeys in China are happy to ...

When does one of the central ideas in economics work?

February 20, 2019

The concept of equilibrium is one of the most central ideas in economics. It is one of the core assumptions in the vast majority of economic models, including models used by policymakers on issues ranging from monetary policy ...

In colliding galaxies, a pipsqueak shines bright

February 20, 2019

In the nearby Whirlpool galaxy and its companion galaxy, M51b, two supermassive black holes heat up and devour surrounding material. These two monsters should be the most luminous X-ray sources in sight, but a new study using ...

Research reveals why the zebra got its stripes

February 20, 2019

Why do zebras have stripes? A study published in PLOS ONE today takes us another step closer to answering this puzzling question and to understanding how stripes actually work.


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (2) Apr 22, 2015
what ever happened to the second Hubble Class telescope the military had built and placed in storage and was never used for anything?

A few years ago there was talk that the military had given it to NASA or said it would be given to them for launching if they wanted it.

A second Hubble class telescope can be easily placed in orbit and used with the existing Hubble to act like a giant set of binoculars which would open up the cosmos.

That to me sound like the cheapest and fastest thing that can be done to the Hubble mission. The taxpayers have already paid for the second telescope decades ago and it is sitting in storage. Maybe a private sector launcher can take it up.
5 / 5 (3) Apr 22, 2015
"what ever happened to the second Hubble Class telescope the military had built and placed in storage and was never used for anything?"

The National Reconnaissance Office donated two unfinished/unused space telescopes to NASA in 2012: https://en.wikipe..._to_NASA

One of those space telescopes will be outfitted with new sensors and electronics to become the Wide Field Infrared Survey Telescope (WFIRST) which is currently slated for launch sometime in the mid-2020s: https://en.wikipe...elescope

As for now there are no firm plans for the use of the second space telescope (undoubtably due to the current tight budgets NASA has to work with). Still, WFIRST is a highly anticipated mission in the astrophysics community.
1 / 5 (1) Apr 22, 2015
Instead of letting the two of the three other telescopes go to waste why not give them to a private launcher. The private space companies could place them in orbit and charge for the telescope time to universities and others to get their money out of the deal.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.