High-speed jets from a possible new class of galaxy

January 19, 2015, Harvard-Smithsonian Center for Astrophysics
The Seyfert galaxy NGC 5033. Like all Seyferts, this one has a very bright core and majestic but relatively faint spiral arms. The emission in Seyferts is likely powered by a supermassive black hole, and new observations of a distant radio-bright Seyfert have detected X-ray emission from fast-moving charged particles in jets from the vicinity of its black hole. Credit: Adam Block, Mt. Lemmon SkyCenter, University of Arizona

Seyfert galaxies are similar to spiral galaxies except that they have extraordinarily prominent, bright nuclei, sometimes as luminous as 100 billion Suns. Their huge energies are thought to be generated as matter falls towards a central supermassive black hole and accretes onto a circumnuclear disk around it. Observations distinguish between two types of Seyferts: those whose nuclear emission appears to be slightly obscured, thought to be the result of viewing the galaxy edge-on through an obscuring disk, and those seen face-on.

Bipolar jets of charged particles moving at relativistic speeds are the most powerful manifestation of the energy release by . In about 15 per cent of objects, the accretion disc is at the base of a bipolar outflow of such a relativistic plasma. The jets can extend well beyond the host galaxy, producing spectacular lobes of plasma most prominently detected at but detectable across the entire electromagnetic spectrum. In those cases where the galaxy is seen face-on, and the jet axis is closely aligned with our line of sight, relativistic effects make the jet radiation exceptionally intense and dramatic, with extremely high energy X-ray and gamma-ray light. Since strong are typically seen edge-on (or at somewhat larger angles with the full extent of the outflow observed on the sky), only a small fraction of radio galaxies are observed to have high .

In 2008, the Fermi satellite discovered high energy coming from a radio-bright, edge-on Seyfert, PMNJ0948+0022, suggesting the presence of a possible new class of supermassive black hole nucleus. Since then four other examples have been found. CfA astronomers Wystan Benbow, Matteo Cerruti, Pascal Fortin, and Emmet Roache joined a with large team of collaborators to study PMNJ0948+0022 in using CfA's VERITAS telescope and at X-ray to optical wavelengths with a compliment of other telescopes. During an observing period about two years ago this month, the source erupted in a bright flare in the optical, ultraviolet, and X-ray wavelengths. VERITAS observed the source about one week later but was unable to detect it. By combining the various results and limits, the team is able to model the emission as arising from charged particles moving at nearly the speed of light (only one part in ten million less) in the presence of magnetic fields about four times as strong as the Earth's field, from the vicinity of a black hole whose mass is about 150 million solar-masses. Although the results are dramatic, further observations are now needed to confirm if this galaxy represents a new class of objects.

Explore further: Study suggests black hole jets get their power from spin

More information: "The Most Powerful Flaring Activity from the NLSy1 PMN J0948+0022," F. D'Ammando et al., MNRAS 446, 2456, 2015.

Related Stories

Study suggests black hole jets get their power from spin

November 20, 2014

(Phys.org) —A team of space scientists working in Italy has found more evidence that suggests the energy needed to emit jets from supermassive black holes comes from the spin of the black hole itself. In their paper published ...

Accreting supermassive black holes in the early universe

October 27, 2014

Supermassive black holes containing millions or even billions of solar-masses of material are found at the nuclei of galaxies. Our Milky Way, for example, has a nucleus with a black hole with about four million solar masses ...

A new class of extragalactic objects

October 29, 2012

A blazar is a galaxy with an intensely bright central nucleus containing a supermassive black hole, much like a quasar. The difference is that a blazar can emit light with extremely high energy gamma rays that are sometimes ...

Ultra-luminous X-ray sources in starburst galaxies

December 22, 2014

Ultra-luminous X-ray sources (ULXs) are point sources in the sky that are so bright in X-rays that each emits more radiation than a million suns emit at all wavelengths. ULXs are rare. Most galaxies (including our own Milky ...

Recommended for you

Exploring planetary plasma environments from your laptop

June 15, 2018

A new database of plasma simulations, combined with observational data and powerful visualisation tools, is providing planetary scientists with an unprecedented way to explore some of the Solar System's most interesting plasma ...

NASA encounters the perfect storm for science

June 14, 2018

One of the thickest dust storms ever observed on Mars has been spreading for the past week and a half. The storm has caused NASA's Opportunity rover to suspend science operations, but also offers a window for four other spacecraft ...

The most distant radio galaxy discovered

June 14, 2018

An international team of astronomers has detected a new high-redshift radio galaxy (HzRG). The newly identified HzRG, designated TGSS1530, was found at a redshift of 5.72, meaning that it is the most distant radio galaxy ...

Trio of infant planets discovered around newborn star

June 13, 2018

Two independent teams of astronomers have uncovered convincing evidence that three young planets are in orbit around an infant star known as HD 163296. Using a new planet-finding strategy, the astronomers identified three ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.