Team realizes an Aharonov-Bohm type interferometer to measure the band topology in graphene type lattices

December 19, 2014, Ludwig Maximilian University of Munich
Honeycomb lattice structure created by three intersecting laser beams (arrows). Credit: Chair of Quantum Optics, LMU

Among the most revolutionary concepts of modern physics is that the laws of nature are inherently non-local. One striking manifestation of this non-locality was famously predicted by Aharonov and Bohm: a magnetic field confined to the interior of a solenoid can alter the behavior of electrons outside it, shifting the phase of their wave-like interference although they never directly encounter the magnetic field.

Originally regarded as a mere curiosity, such "geometric phase shifts" are now known to have dramatic consequences for electron transport in solid-state materials, e.g., allowing unimpeded current flow along the edges of a material that is insulating in the bulk. In suitable crystalline structures, geometric phase shifts can arise even in the absence of any , instead induced by an elusive property known as "Berry flux" in momentum space that is difficult to measure directly.

Now, scientists at the Ludwig-Maximilians-Universität Munich, the Max Planck Institute of Quantum Optics and Stanford University have demonstrated a matter-wave interferometer that precisely measures Berry flux in an artificial crystal formed by a standing wave of light.

Their method, reported this week in Science Express may ultimately enable new approaches to quantum computation exploiting non-local, topological properties of matter for robust encoding of quantum information.

Credit: Lehrstuhl für Quantenoptik, LMU
Credit: Lehrstuhl für Quantenoptik, LMU

Explore further: Vortex of electrons provides unprecedented information on magnetic quantum states in solids

More information: "An Aharonov-Bohm interferometer for determining Bloch band topology." Science DOI: 10.1126/science.1259052

Related Stories

Quantum interference fine-tuned by Berry phase

July 5, 2012

(Phys.org) -- A team from the University of Bristol’s Centre for Quantum Photonics (CQP) has experimentally demonstrated how to use Berry’s phase to accurately control quantum interference between different photons.

Determining the quantum geometry of a crystal

November 7, 2013

Geometrical phases occur in many places in nature. One of the simplest examples is the Foucault pendulum: a tall pendulum free to swing in any vertical plane. Due to the earth rotation, the actual plane of swing rotates relative ...

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.