Team realizes an Aharonov-Bohm type interferometer to measure the band topology in graphene type lattices

December 19, 2014, Ludwig Maximilian University of Munich
Honeycomb lattice structure created by three intersecting laser beams (arrows). Credit: Chair of Quantum Optics, LMU

Among the most revolutionary concepts of modern physics is that the laws of nature are inherently non-local. One striking manifestation of this non-locality was famously predicted by Aharonov and Bohm: a magnetic field confined to the interior of a solenoid can alter the behavior of electrons outside it, shifting the phase of their wave-like interference although they never directly encounter the magnetic field.

Originally regarded as a mere curiosity, such "geometric phase shifts" are now known to have dramatic consequences for electron transport in solid-state materials, e.g., allowing unimpeded current flow along the edges of a material that is insulating in the bulk. In suitable crystalline structures, geometric phase shifts can arise even in the absence of any , instead induced by an elusive property known as "Berry flux" in momentum space that is difficult to measure directly.

Now, scientists at the Ludwig-Maximilians-Universität Munich, the Max Planck Institute of Quantum Optics and Stanford University have demonstrated a matter-wave interferometer that precisely measures Berry flux in an artificial crystal formed by a standing wave of light.

Their method, reported this week in Science Express may ultimately enable new approaches to quantum computation exploiting non-local, topological properties of matter for robust encoding of quantum information.

Credit: Lehrstuhl für Quantenoptik, LMU
Credit: Lehrstuhl für Quantenoptik, LMU

Explore further: Vortex of electrons provides unprecedented information on magnetic quantum states in solids

More information: "An Aharonov-Bohm interferometer for determining Bloch band topology." Science DOI: 10.1126/science.1259052

Related Stories

Quantum interference fine-tuned by Berry phase

July 5, 2012

(Phys.org) -- A team from the University of Bristol’s Centre for Quantum Photonics (CQP) has experimentally demonstrated how to use Berry’s phase to accurately control quantum interference between different photons.

Determining the quantum geometry of a crystal

November 7, 2013

Geometrical phases occur in many places in nature. One of the simplest examples is the Foucault pendulum: a tall pendulum free to swing in any vertical plane. Due to the earth rotation, the actual plane of swing rotates relative ...

Recommended for you

New insights into magnetic quantum effects in solids

January 23, 2019

Using a new computational method, an international collaboration has succeeded for the first time in systematically investigating magnetic quantum effects in the well-known 3-D pyrochlore Heisenberg model. The surprising ...

Rapid and continuous 3-D printing with light

January 22, 2019

Three-dimensional (3-D) printing, also known as additive manufacturing (AM), can transform a material layer by layer to build an object of interest. 3-D printing is not a new concept, since stereolithography printers have ...

Scientists discover new quantum spin liquid

January 22, 2019

An international research team led by the University of Liverpool and McMaster University has made a significant breakthrough in the search for new states of matter.

Researchers capture an image of negative capacitance in action

January 21, 2019

For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. This novel result provides researchers with fundamental, atomistic insight into the physics of negative capacitance, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.