Plants with pocket-sized genomes

December 12, 2014, Ludwig Maximilian University of Munich
Plants with pocket-sized genomes
Genlisea aurea: A close relative of the species of corkscrew plant (G. tuberosa) that possesses the smallest genome known among flowering plants. Credit: Andreas Fleischmann

Members of Genlisea, a genus of carnivorous plants, possess the smallest genomes known in plants. To elucidate genomic evolution in the group as a whole, researchers have now surveyed a wider range of species, and found a new record-holder.

The genus Genlisea (corkscrew plants) belongs to the bladderwort family (Lentubulariaceae), a family of . Some of the 29 species of Genlisea that have been described possess tiny genome sizes. Indeed, the smallest genome yet discovered among flowering plants belongs to a member of the group. The term 'genome' here refers to all genetic material arranged in a set of individual chromosomes present in each cell of a given species. An international team of researchers, led by Professor Günther Heubl of LMU's Department of Biology, has now explored, for the first time, the evolution of genome size and chromosome number in the genus. Heubl and his collaborators studied just over half the known species of Genlisea, and their findings are reported in the latest issue of the journal Annals of Botany.

Species of Genlisea are found in nutrient-poor environments, such as water-logged savannahs, swamps and moorland habitats in South America and tropical Africa. In the study, the research team, which also included specialists from the Universities of Vienna (Austria) and Münster (Germany), as well as Rutgers University in New Jersey (USA) investigated 15 species representing the major lineages of the genus

Setting a new record

"During the evolution of the genus, the genomes of some Genlisea species must have undergone a drastic reduction in size, which was accompanied by miniaturization of chromosomes, but an increase in chromosome number," says Dr. Andreas Fleischmann, a member of Heubl's research group. Indeed, the chromosomes of the corkscrew plants are so minute that they can only just be resolved by conventional light microscopy. With the aid of an ingenious preparation technique, Dr. Aretuza Sousa, a specialist in cytogenetics and cytology at the Institute of Systematic Botany at LMU, was able to visualize the ultrasmall chromosomes of Genlisea species by fluorescence microscopy. Thanks to this methodology, the researchers were able to identify individual chromosomes and determine their number, as well as measuring the total DNA content of the nuclear genomes of selected representatives of the genus.

The LMU researchers also discovered a new record-holder. Genlisea tuberosa, a species that was discovered only recently from Brazil, and was first described by Andreas Fleischmann in collaboration with Brazilian botanists, turns out to have a genome that encompasses only 61 million base pairs (= Mbp; the genome size is expressed as the total number of nucleotide bases found on each of the paired strands of the DNA double helix) Thus G. tuberosa possesses now the smallest plant genome known, beating the previous record by 3 Mbp. Moreover, genome sizes vary widely between different Genlisea species, spanning the range from ~60 to 1700 Mbp.

The reasons for the wide range of genome size found in different species remain largely enigmatic. "Interestingly, the size of an organism's genome does not correlate with its complexity or evolutionary level. Although unicellular organisms like brewer's yeast, as well as some plant species, have far less DNA in their cells than humans do, many plants have much larger genomes than ours," Fleischmann explains. The genus Genlisea, with its broad range of variation in genome size between different , therefore offers a perfect group of model organisms to study the evolutionary pressures that determine . "Genlisea is an ideal model system for understanding the molecular basis for genome reduction and the mechanisms that drive it, especially since the complete genome of G. aurea has already been sequenced and published," says Günther Heubl.

Explore further: Evolution can cause a rapid reduction in genome size

More information: "Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms." Ann Bot (2014) 114 (8): 1651-1663 first published online October 1, 2014 DOI: 10.1093/aob/mcu189

Related Stories

Evolution can cause a rapid reduction in genome size

April 21, 2011

( -- It would appear reasonable to assume that two closely related plant species would have similar genetic blueprints. However, scientists from the Max Planck Institute for Developmental Biology in Tübingen, ...

Coffee tree genome sequenced

November 5, 2014

In the study published in Science, the researchers were interested in Robusta coffee because of its average sized genome (710 million pairs of DNA bases) and its diploid nature (contrary to Coffea arabica, which is tetraploid). ...

Genome evolution and carbon dioxide dynamics

October 25, 2012

Using the size of guard cells in fossil plants to predict how much DNA each cell contained (the genome size), researchers have discovered that variations in genome sizes over geological time correlate with atmospheric carbon ...

Glanville fritillary genome sequenced

September 5, 2014

The Glanville fritillary has long been an internationally known model species for ecology and evolutionary biology, whose population biology has been studied on the Åland Islands for more than twenty years. Now the species ...

Recommended for you

Cells lacking nuclei struggle to move in 3-D environments

January 20, 2018

University of North Carolina Lineberger Comprehensive Cancer Center researchers have revealed new details of how the physical properties of the nucleus influence how cells can move around different environments - such as ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.