Signs of ancient Mars lakes and quakes seen in new map

December 15, 2014 by Guy Webster, NASA
Details of hilly terrain within a large Martian canyon are shown on a geological map based on observations from NASA's Mars Reconnaissance Orbiter and produced by the U.S. Geological Survey Astrogeology Science Center, Flagstaff, Arizona. The map shows the structure and geology of a western portion of Mars' Candor Chasma, one of the largest canyons within the longest canyon system in the solar system, Valles Marineris. Landforms in the upper portion of this excerpt from the full map include a series of hills called Candor Colles.

Long ago, in the largest canyon system in our solar system, vibrations from "marsquakes" shook soft sediments that had accumulated in Martian lakes.

The shaken sediments formed features that now appear as a series of low hills apparent in a geological based on NASA images. The map was released today by the U.S. Geological Survey (USGS).

This map of the western Candor Chasma canyon within Mars' Valles Marineris is the highest-resolution Martian geological map ever relased by USGS. It is derived from images taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter, which reveal details smaller than a desk. The map is available for download at: pubs.usgs.gov/sim/3309/ . Additional information about the map is available at: www.usgs.gov/blogs/features/us … st-detailed-one-yet/ .

"This new map shows that at the time these sediments were deposited, a part of west Candor Chasma, specifically Condor Colles, contained numerous shallow, spring-fed lakes," said map author Chris Okubo of the USGS Astrogeology Science Center, Flagstaff, Arizona. "These lakes helped to trap wind-blown sand and dust, which accumulated over time and formed the extensive we see today."

The wet sediments experienced seismic shaking in "marsquakes" related to movement along several large geological faults in the area. A series of low hills resulted.

Valles Marineris is more than 2,500 miles (4,000 kilometers) long. The conditions under which sedimentary deposits in it formed have been an open issue for decades. Possibilities proposed have included accumulation in lakebeds, volcanic eruptions under glaciers within the canyons, and acculation of wind-blown sand and dust.

Credit: NASA

Explore further: ASU, USGS project yields sharpest map of Mars' surface properties

Related Stories

Glaciers in the grand canyon of Mars?

September 30, 2014

For decades, planetary geologists have speculated that glaciers might once have crept through Valles Marineris, the 2000-mile-long chasm that constitutes the Grand Canyon of Mars. Using satellite images, researchers have ...

Image: Mystery mounds on Mars

December 13, 2013

Intriguing mounds of light-toned layered deposits sit inside Juventae Chasma, surrounded by a bed of soft sand and dust.

Recommended for you

Can people learn to embrace risk?

March 18, 2019

Studies have shown women are more risk-averse than men, more likely to opt for the smaller sure thing than gamble on an all-or-nothing proposition, a trait experts say could help to explain the persistent wage gap between ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.