Scientists film magnetic memory in super slow-motion

November 28, 2014
Illustration of the magnetic field direction within the memory cell. Credit: Philipp Wessels/University of Hamburg

Researchers at DESY have used high-speed photography to film one of the candidates for the magnetic data storage devices of the future in action. The film was taken using an X-ray microscope and shows magnetic vortices being formed in ultrafast memory cells. Their work, which has been reported by the scientists surrounding Dr. Philipp Wessels of the University of Hamburg in the journal Physical Review B, provides a better understanding of the dynamics of magnetic storage materials. Magnetic memory cells are found in every computer hard drive.

"Our images allow us to observe in real time how exactly magnetisation evolves", explains Wessels, from the research group of Prof. Markus Drescher at the Hamburg Centre for Ultrafast Imaging (CUI). "For the first time, we can observe the switching of these magnetic cells in detail." For their investigation, the researchers chose a memory cell made of an alloy of nickel and iron, which can be magnetised in less than a billionth of a second.

Their custom-built X-ray microscope, developed in association with a group headed by Prof. Thomas Wilhein at the Koblenz University of Applied Sciences, makes it possible for scientists to watch a memory cell being erased and then having new data written into it. The short pulses of X-rays produced by DESY's synchrotron radiation source PETRA III give the images a temporal resolution of 0.2 billionths of a second (200 picoseconds). The degree of magnetisation can be measured via the extent to which the polarised X-ray radiation is absorbed by different regions of the sample. The X-ray microscope is able to distinguish minute details, down to 60 millionths of a millimetre (60 nanometres).

The video will load shortly.
The video shows the erasing and new magnetisation of a memory cell, as seen through the X-ray microscope. Credit: Philipp Wessels/University of Hamburg

In their experiment, the scientists used tiny squares of the nickel-iron alloy, each side of which was two thousandths of a millimetre (2 micrometres) long. Each of the has four magnetic regions, so-called domains, whose magnetic field varies either in a clockwise or anti-clockwise direction. The individual magnetic domains are triangular, with their apexes meeting in the centre of the storage cell, producing a magnetic vortex core in the centre of the cell.

When the contents of the memory cell are erased by an , the magnetic vortex core is driven out of the cell. "In our experiment, we were for the first time able to measure the speed at which the vortex cores are expelled from the material," explains co-author Dr. Jens Viefhaus, who is in charge of the beamline P04, on which the experiments were conducted. It turns out that the core is pushed out of the memory cell at over 3600 kilometres per hour. "Because this process is reproducible, we were able to make a reliable measurement of the velocity," points out the CUI research scientist and associate professor Dr. Guido Meier. "In order to make these measurements, we had to use very intense and stable magnetic excitation pulses."

The external magnetic field forces the entire memory cell into a state of uniform magnetisation. Once the field is switched off, the cell once again forms four magnetic domains with a central vortex – whose direction depends on that of the applied ; in other words, new data is written to the cell. The process is complex, however. "The four-domain state develops via a complicated zigzag pattern, and for the first time we were able to watch 'live' as this state was formed", reports Wessels. The observed behaviour is in good agreement with the results of simulations. Thanks to the super-slow motion film, the high-speed dynamics of the process can now be viewed in greater detail.

The video will load shortly.
Simulation of the direction of the magnetic field inside the memory cell during equilibrium, erasing and new magnetisation. The patterns resemple those seen throug the X-ray microscope. Credit: Philipp Wessels/University of Hamburg

"The same method can be used to study the dynamics of any other magnetic materials," notes Wessels. "Our experiments can help us to understand how quickly data can, in principle, be written to a magnetic storage medium, coded in the form of domains."

These investigations have considerable practical implications for data storage technology. "Although laptops and other mobile devices these days are increasingly using non-magnetic storage technologies, such as flash memory, the price of devices means that there is no substitute for them when it comes to storing large amounts of data", says Wessels. "The current trend is towards storing data in the cloud – and the cloud is magnetic." A better understanding of magnetisation dynamics can lead to faster and better storage media.

Explore further: Rare material key to computer advances

More information: "Time-resolved imaging of domain pattern destruction and recovery via nonequilibrium magnetization states"; Philipp Wessels, Johannes Ewald, Marek Wieland, Thomas Nisius, Andreas Vogel, Jens Viefhaus, Guido Meier, Thomas Wilhein and Markus Drescher; "Physical Review B", 2014; DOI: 10.1103/PhysRevB.90.184417

Related Stories

Rare material key to computer advances

June 19, 2014

Researchers from Victoria University of Wellington have answered fundamental questions about a rare class of materials that could lead to faster, more reliable memory storage in computers.

Magnetic memories on the right track

August 27, 2014

Computer hard drives store data by writing magnetic information onto their surfaces. In the future, magnetic effects may also be used to improve active memory in computers, potentially eliminating the need to 'boot up' a ...

Controlling skyrmions for better electronics

August 8, 2013

Physicists at the University of Hamburg managed for the first time to individually write and delete single skyrmions, a knot-like magnetic entity. Such vortex-shaped magnetic structures exhibit unique properties which make ...

Recommended for you

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

5 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

tonymsm
not rated yet Nov 28, 2014
If I remember correctly, scientists made pictures of the operation of the movement of domains in what were known as magnetic bubble memories back in the 1960s, and these memories were flown in an early laptop called the Grid Compass.
imido
Nov 28, 2014
This comment has been removed by a moderator.
imido
Nov 28, 2014
This comment has been removed by a moderator.
tonymsm
not rated yet Nov 29, 2014
@imido: Thanks for the explanation about the bubble memories. However, it sounds like the requirement for huge magnetic fields for manipulation of these quantized magnetic vortices will doom them to becoming a scientific curiosity rather than something practical, despite their speed. How do they compare to memristors?
imido
Nov 29, 2014
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.