The impossible triple star KIC 2856960

September 9, 2014 by Brian Koberlein, One Universe At A Time, One Universe at a Time
Credit: ESO/M. Kornmesser

There's news this week of an "impossible" triple star system recently discovered by astronomers. One that "defies known physics." Needless to say, there's no need to abandon physics quite yet.

It all comes from a new paper being published in MNRAS titled "KIC 2856960: the impossible triple star." Despite the overly-hyped title, it is interesting work. It's based upon gathered from the Kepler satellite, which looked at the brightness of stars over time looking for exoplanets. Kepler finds exoplanets via the transit method, where the brightness of a star can be seen to dip when a planet passes in front of it. But the method can also be used to study if they happen to have the right alignment. Just as a planet can cause a star to dip in brightness when it passes in front, one star passing in front of another can have a similar effect.

The team looked at the data from KIC 2856960, for which Kepler gathered data over 4 years. In the data we see a small dip in brightness about 4 times a day, and a larger dip every 204 days. From this, it looks like a close binary of smaller stars (with orbital periods of 0.26 days) orbiting a third star with a period of 204 days. So it is a fairly common triple star system. Not a big deal, move on to other data.

But this team wanted to determine some of the characteristics of this system, such as their exact orbits and masses, so they looked at the data in more detail. Determining the details of a system can be tricky. There are all sorts of things that can add to noise in your data, such as starspots and other stellar activity. This is why exoplanets are divided into confirmed planets and candidate planets. Once you've eliminated the noise you can, you try to match the observed fluctuations to particular orbits, and then see if those orbits are stable. Sometimes the results can be deceiving.

What the team found was that the more they looked at the data for KIC 2856960, the more confusing things got. At first glance it looks like a triple star system, but when they tested candidate orbits, none of them seemed to fit. Several of them kind of fit, but there was always some unexplained fluctuation in the data. So the team tried other models, and found a 4-star system that basically worked, but it required the orbits one to be in exact resonance with the other, which seems highly unlikely.

In other words, the Kepler data is inconclusive. It could be a strange 4-, or it could be a system with something else buried in the data. We can't be certain at this point. This does not make KIC 2856960 an "impossible" system. There's no evidence that it is defying known physics, just that the data is odd and we don't understand it.

And that in itself makes it interesting. It is clear that this system is not a simple, boring triple system. It's a mystery at the moment, but it's a mystery that could be solved with more work and more data. And that makes it a mission possible.

Explore further: Is our solar system weird?

More information: T. R. Marsh, et al. "KIC 2856960: the impossible triple star." MNRAS (2014) arxiv.org/abs/1409.0722

Source:: One Universe at a Time

0 shares

Related Stories

Is our solar system weird?

July 18, 2014

Is our Solar System normal? Or is it weird? How does the Solar System fit within the strange star systems we've discovered in the Milky Way so far?

Bright star reveals new exoplanet

January 22, 2014

An international team of astronomers at Stellar Astrophysics Centre in Aarhus, Denmark, have discovered a new exoplanet, christened "Kepler-410A b." The planet is about the size of Neptune and orbits the brightest star in ...

Half of all exoplanet host stars are binaries

September 4, 2014

(Phys.org) —Imagine living on an exoplanet with two suns. One, you orbit and the other is a very bright, nearby neighbor looming large in your sky. With this "second sun" in the sky, nightfall might be a rare event, perhaps ...

Transiting exoplanet with longest known year

July 21, 2014

Astronomers have discovered a transiting exoplanet with the longest known year. Kepler-421b circles its star once every 704 days. In comparison, Mars orbits our Sun once every 780 days. Most of the 1,800-plus exoplanets discovered ...

Exoplanet measured with remarkable precision

August 19, 2014

Barely 30 years ago, the only planets astronomers had found were located right here in our own solar system. The Milky Way is chock-full of stars, millions of them similar to our own sun. Yet the tally of known worlds in ...

Recommended for you

Video: Net successfully snares space debris

September 19, 2018

The RemoveDEBRIS satellite has successfully used its on-board net technology in orbit – the first demonstration in human history of active debris removal (ADR) technology.

Mercury studies reveal an intriguing target for BepiColombo

September 19, 2018

A month before the planned launch of the joint ESA-JAXA BepiColombo mission to Mercury, two new studies shed light on when the innermost planet formed and the puzzle of its chemical composition. The findings will be presented ...

The surprising environment of an enigmatic neutron star

September 17, 2018

An unusual infrared emission detected by the Hubble Space Telescope from a nearby neutron star could indicate that the pulsar has features never before seen. The observation, by a team of researchers at Penn State, Sabanci ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Brockway
1 / 5 (3) Sep 09, 2014
Like we needed more proof of global warming.
TechnoCreed
5 / 5 (2) Sep 09, 2014
Like we needed more proof of global warming.
What is the purpose of this comment? This article is about astrophysics not climate science. Get a life!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.