Good results obtained with a novel technology to produce large-scale neutron converters

September 25, 2014, CORDIS

A European collaboration is developing an atmospheric plasma deposition system to produce Boron-10 layers to cope with the Hellium-3 shortage.

Helium-3 is widely used in neutron detectors worldwide. However, due to a 3He shortage that caused its price to rise, it is necessary to find affordable alternatives for . A team of the detector laboratory at the Helmholtz-Zentrum Berlin (HZB) is exploring new techniques for the production of boron-10 (10B) layers. This work is part of a Joint Research Activity on Detectors supported by NMI3. In the video, Thomas Wilpert, Andriy Styervoyedov, and Svyatoslav Alimov from HZB explain a new promising technology.

The best techniques to produce 10B layers

The standard technique to produce 10B layers is magnetron sputtering, which is a vacuum-based technology that needs days of work to create one m² of neutron converter. An instrument for inelastic neutron scattering has a large detection area of 10 to 100 m2 and requires a stack of 20 to 30 10B-based layers of about 1 µm thickness to achieve satisfying detection efficiencies. Thus, in total 200-3000 m² 10B-layers have to be produced per instrument in reasonable time at affordable prices.

After exploring a number of alternative techniques suited to coat delicate aluminium substrates, the HZB team found a good candidate that could do the job: an atmospheric pressure is able to produce needed converters much faster and uses the precious source material more efficiently.

Atmospheric plasma is rapidly developing direction in thin films coatings technology and it has already found industrial application in aerospace engineering, solar modules production, biomedicine and other state-of-the-art fields. Unlike vacuum plasmas, atmospheric plasmas don't require expensive pumping systems, complex transfer chambers from air to vacuum and can be applied to a wide variety of surfaces.

The HZB Detector laboratory team has assembled the experimental set-up on the base of Atmospheric Plasma Source (APS) and after adjustment of many system parameters has received promising results in boron-10 layers formation.

For comparison of the neutron absorption efficiency of 10B-based layers made by APS it is necessary to have reference layers of high quality created with vacuum plasma technique. For this purpose conventional magnetron sputtering was boosted to provide denser plasma with a higher fraction of boron ions. Boron-rich plasma leads to improved adhesion and higher density of formed layers. As a result high quality 10B reference layers were deposited at HZB using a special type magnetron sputtering and are now available for comparative measurements.

The results obtained so far show that this new atmospheric plasma system is very efficient as it allows very high deposition rates. The HZB detector team anticipates producing one m² neutron converter within few hours.

Explore further: Biomedical applications of plasma technology

Related Stories

Biomedical applications of plasma technology

September 24, 2014

Atmospheric plasma is widely used for medical and biological applications including sterilization, selective killing of tumor cells, gene transfection, and healing wounds.

Neutrons help visualising materials

April 8, 2014

New imaging methods will offer new possibilities to physicists, material scientists, engineers, palaeontologists, archaeologists, and others, so that they can obtain better information on their objects of study.

Recommended for you

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

Researchers report new light-activated micro pump

March 11, 2019

Even the smallest mechanical pumps have limitations, from the complex microfabrication techniques required to make them to the fact that there are limits on how small they can be. Researchers have announced a potential solution—a ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.