Researchers discover new group of quasicrystals

March 6, 2014 by Bob Yirka report
Upon surface adsorption, ferrocenecarboxylic acid molecules form cyclic pentamers that self-assemble into quasicrystal-like patterns. The shapes from a Penrose tiling — pentagon, star, boat, and rhombus — are overlaid to show the long-range structure of the monolayer. Credit: S. Alex Kandel

( —A team of researchers working at the university of Notre Dame has discovered a whole new group of quasicrystals. In their paper published in the journal Nature, the team describes how they accidently created a new kind of quasicrystal as part of a series of experiments designed to learn more about electron distribution in ferrocenecarboxylic acids.

Quasicrystals are groups of molecules bonded together in structures that resemble crystals in that they are organized, but unlike crystals, the structures are not nearly as uniform. In fact, they are quite the opposite—though they are locally symmetric, they lack any sort of long distance periodicity. Because of their chaotic nature, tend to feel slippery to the touch, which is why they have been used to coat the surface of non-stick frying pans. The first quasicrystal was made, also by accident, in 1982, by Daniel Shechtman (who later won a Nobel prize for his work). Since then many more of them have been made in various labs, (one was even found to exist in a meteorite) though most of them have had one thing in common, they were all formed from two or three metal alloys.

In this latest discovery, the quasicrystals self-formed after the researchers placed a layer of iron containing molecules of ferrocenecarboxylic acid on top of a gold surface. The team was expecting to see a linear group of stable molecules pairing up as dimers, but instead were surprised to find that they had formed into five sided rosettes—it was the rosettes that pushed other molecules into bonding forming crystalline shapes, resulting in the formation of 2D quasicrystals that took the form of several different shapes: stars, boats, pentagons, rhombi, etc., all repeated in haphazard fashion.

In studying the quasicrystals using scanning tunnelling microscopy, the researchers found that they were held together by weak hydrogen bonds rather that the strong ionic bonds found in other such molecules. Weak hydrogen bonds are generally more common in organic that exhibit complex structures.

In their paper, the researchers suggest their discovery might lead to the creation or discovery of many other similar types of quasicrystals, though it's still not clear to what use they might be put.

Explore further: Researchers discover new form of 12-sided quasicrystal

More information: Self-assembly of hydrogen-bonded two-dimensional quasicrystals, Nature 507, 86–89 (06 March 2014) DOI: 10.1038/nature12993

The process of molecular self-assembly on solid surfaces is essentially one of crystallization in two dimensions, and the structures that result depend on the interplay between intermolecular forces and the interaction between adsorbates and the underlying substrate1. Because a single hydrogen bond typically has an energy between 15 and 35 kilojoules per mole, hydrogen bonding can be a strong driver of molecular assembly; this is apparent from the dominant role of hydrogen bonding in nucleic-acid base pairing, as well as in the secondary structure of proteins. Carboxylic acid functional groups, which provide two hydrogen bonds, are particularly promising and reliable in creating and maintaining surface order, and self-assembled monolayers of benzoic acids produce structure that depends on the number and relative placement of carboxylic acid groups2, 3, 4, 5, 6. Here we use scanning tunnelling microscopy to study self-assembled monolayers of ferrocenecarboxylic acid (FcCOOH), and find that, rather than producing dimeric or linear structures typical of carboxylic acids, FcCOOH forms highly unusual cyclic hydrogen-bonded pentamers, which combine with simultaneously formed FcCOOH dimers to form two-dimensional quasicrystallites that exhibit local five-fold symmetry and maintain translational and rotational order (without periodicity) for distances of more than 400 ångströms.

Related Stories

Researchers discover new form of 12-sided quasicrystal

October 10, 2013

( —A team of researchers working at Germany's Martin-Luther-Universität has discovered a new form of a 12-sidded quasicrystal. In their paper published in the journal Nature, the team describes how they accidently ...

Quasicrystal mystery unraveled with computer simulation

March 6, 2008

The method to the madness of quasicrystals has been a mystery to scientists. Quasicrystals are solids whose atoms aren't arranged in a repeating pattern, as they are in ordinary crystals. Yet they form intricate patterns ...

Scientists discover new family of quasicrystals

June 10, 2013

( —Scientists at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered a new family of rare-earth quasicrystals using an algorithm they developed to help pinpoint them. Quasicrystalline materials ...

Research shows potential for quasicrystals

March 20, 2013

( —Ever since their discovery in 1984, the burgeoning area of research looking at quasiperiodic structures has revealed astonishing opportunities in a number of areas of fundamental and applied research, including ...

Recommended for you

Group uses its own 'toolset' to probe chemical responses

January 24, 2017

Using a novel chemical procedure developed in her lab, Yimon Aye and her group are helping to blaze a trail in the emerging field of precision medicine by targeting and modulating single proteins to achieve desired responses.

Scientists spin artificial silk from whey protein

January 23, 2017

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's research light source PETRA III, the scientists could watch just how ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.