A single gene, doublesex, controls wing mimicry in butterflies

March 5, 2014
Papilio polytes, an Asian swallowtail butterfly species also known as the Common Mormon, possesses distinctive mimicry patterns (left). The same species also has non-mimetic forms (right). A single gene, doublesex, controls these patterns. Credit: University of Chicago, Marcus Kronforst

A single gene regulates the complex wing patterns, colors and structures required for mimicry in swallowtail butterflies, report scientists from the University of Chicago, March 5 in Nature. Surprisingly, the gene described, doublesex, is already well-known for its critical role in sexual differentiation in insects.

"Conventional wisdom says that it should be multiple genes working together to control the whole wing pattern of a butterfly," said Marcus Kronforst, Neubauer Family Assistant Professor of Ecology & Evolution at the University of Chicago and senior author of the study. "But in this case, it's just this one. This single gene that controls has been co-opted to do a totally new job."

Studied as an example of natural selection for centuries, wing pattern mimicry in butterflies enables non-toxic species to mimic the pattern, color and shape of a toxic species' wings to deter predation. A single region of the genome regulates this process in some swallowtail butterflies. Due to the complexity of forms involved with mimicry, researchers have assumed this region contained a "supergene"—multiple tightly-linked genes, each controlling a subset of the wing pattern. However, little was known about this hypothesized mimicry supergene.

To identify its function, Kronforst and his team studied Papilio polytes, an Asian swallowtail butterfly species that displays sex-limited mimicry. Females possess one of four different wing patterns, three of which mimic toxic species, while the remaining female form and all males remain non-mimetic.

Some female Papilio polytes butterfly display colors and patterns that mimic the wings of a toxic butterfly species (center column). Non-mimetic members of the same species flank the mimetic members (side columns). A single gene, doublesex, controls these patterns. Credit: University of Chicago, Marcus Kronforst

Through a genetic mapping process that involved mating butterflies of differing wing patterns and comparing the genomes of around 500 offspring, the team identified five possible genes involved in mimicry. They then sequenced the genomes of 30 butterflies, evenly split between mimetic and non-mimetic, and looked for correlations between these specific genes and wing pattern.

To their surprise, only one, doublesex, showed an association. Well established as a gene that controls sexual differentiation in insects, doublesex functions through alternative splicing. When copied into messenger RNA, it is cut and rearranged into different isoforms, which then go on to instruct cells whether they should be male or female.

Kronforst and his team found that doublesex is also alternatively spliced into multiple isoforms in Papilio polytes. Two in particular were expressed at extremely high levels in the wings of mimetic butterflies when compared to non-mimetic females. Tracing the doublesex protein from caterpillar to chrysalis to butterfly, the team found expression of doublesex overlaps exactly with wing pattern.

"When you look at the wing tissue in a chrysalis five days after it forms the pupa, it's just a floppy piece of white tissue," Kronforst said. "But when you look at where doublesex is being manufactured on the wing, it looks just like the future adult wing pattern."

This photo shows the expression of doublesex protein (green) during development mirrors the future wing pattern of an adult Papilio polytes butterfly. Credit: University of Chicago, Marcus Kronforst

How one gene controls so many different functions remains unclear. Kronforst suggests that noncoding, regulatory DNA that controls when and where doublesex is expressed may play a role. The team also found that in mimetic butterflies, the doublesex gene is inverted on the genome. This inversion eliminates the possibility of recombination—alleles will remain distinct from each other and accumulate differing mutations. This has led to structural differences in the doublesex protein between mimetic and non-mimetic butterflies. Because doublesex is a transcription factor and activates other genes, the researchers believe these differences may also contribute to pattern variation.

"We've illustrated the genetic basis of female-limited mimicry in these butterflies," said Wei Zhang, PhD, postdoctoral fellow at the University of Chicago and a lead study author. "But this is just the first step. How doublesex became involved in this process is still uncertain, and requires further study."

Study lead author Krushnamegh Kunte, PhD, of the National Center for Biological Sciences in Bengaluru, India, and a former postdoctoral fellow in the Kronforst lab, anticipates future research will determine if this type of phenomenon will be found in other species. "Across animal species, we find examples where polymorphisms occur in one sex or the other," he said. "We're studying it in the context of mimicry, but it's possible that this sex differentiation pathway that we found in could be a pathway that's more broadly important for sex-limited polymorphism."

Explore further: 'Supergene' is key to copycat butterflies

More information: Nature DOI: 10.1038/nature13112

Related Stories

'Supergene' is key to copycat butterflies

August 12, 2011

Since Charles Darwin, biologists have pondered the mystery of "mimicry butterflies", which survive by copying the wing patterns of other butterflies that taste horrible to their predators, birds.

An eye gene colors butterfly wings red

July 21, 2011

Red may mean STOP or I LOVE YOU! A red splash on a toxic butterfly's wing screams DON'T EAT ME! In nature, one toxic butterfly species may mimic the wing pattern of another toxic species in the area. By using the same signal, ...

Two new butterfly species discovered in eastern US

February 19, 2014

Butterflies are probably best-loved insects. As such, they are relatively well studied, especially in the United States. Eastern parts of the country are explored most thoroughly. First eastern US butterfly species were described ...

How the butterflies got their spots

February 5, 2010

(PhysOrg.com) -- How two butterfly species have evolved exactly the same striking wing colour and pattern has intrigued biologists since Darwin's day. Now, scientists at Cambridge have found 'hotspots' in the butterflies' ...

Evolution of new species requires few genetic changes

October 31, 2013

Only a few genetic changes are needed to spur the evolution of new species—even if the original populations are still in contact and exchanging genes. Once started, however, evolutionary divergence evolves rapidly, ultimately ...

Recommended for you

New gene catalog of ocean microbiome reveals surprises

August 17, 2017

Microbes dominate the planet, especially the ocean, and help support the entire marine food web. In a recent report published in Nature Microbiology, University of Hawai'i at Mānoa (UHM) oceanography professor Ed DeLong ...

Researchers describe gene that makes large, plump tomatoes

August 17, 2017

Farmers can grow big, juicy tomatoes thanks to a mutation in the Cell Size Regulator gene that occurred during the tomato domestication process. Esther van der Knaap of the University of Georgia, Athens and colleagues describe ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Mar 15, 2014
A cliffhanger of research suspense.

Forgive the naivety contained in the following layperson's question:

How does this specific organism implement doublesex into alternative spliced (correct!) isoforms custom tailored and conserved to counter the odds this organism's food chain bears.

On the other hand the only mating partners surviving (not being eaten) are those mating partners that (per chance?!?) mirror the lethal examples set forth by fellow species.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.