High-speed photography provides first direct evidence of how microbubbles dissolve killer blood clots

December 13, 2013
This is a time lapse image of a bubble (purple) burrowing into the network of a clot. The bubble is initially at rest in the fluid next to the clot. Exposure to ultrasound causes the bubble to shoot from left to right, penetrating the clot and causing damage to it in the process. Credit: Christopher Acconcia

Ultrasound-stimulated microbubbles have been showing promise in recent years as a non-invasive way to break up dangerous blood clots. But though many researchers have studied the effectiveness of this technique, not much was understood about why it works. Now a team of researchers in Toronto has collected the first direct evidence showing how these wiggling microbubbles cause a blood clot's demise. The team's findings are featured in the AIP Publishing journal Applied Physics Letters.

Previous work on this technique, which is called sonothrombolysis, has focused on indirect indications of its effectiveness, including how much a blood clot shrinks or how well is restored following the procedure. The Toronto team, which included researchers from the University of Toronto and the Sunnybrook Research Institute, tried to catch the clot-killing process in action. Using high-speed photography and a 3-D microscopy technique, researchers discovered that stimulating the microbubbles with ultrasonic pulses pushes the bubbles toward the clots. The bubbles deform the clots' boundaries then begin to burrow into them, creating fluid-filled tunnels that break the clots up from the inside out.

These improvements in the understanding of how sonothrombolysis works will help researchers develop more sophisticated methods of breaking up , said lead author Christopher Acconcia.

This is a fluorescence imaging of a clot network (red) after sustaining damage from an ultrasound stimulated bubble. The bubble violently penetrated the clot leaving behind a path of damaged clot fibers in its wake. Also shown here is evidence of fluid from outside the clot being transported within (yellow), along the bubble's path. This implies that if clot busting drugs were present, penetrating bubbles could aid in destroying the clot from the inside out. Credit: Acconcia et. al., 2013

Efforts so far "may only be scratching the surface with respect to effectiveness," said Acconcia. "Our findings provide a tool that can be used to develop more sophisticated sonothrombolysis techniques, which may lead to new tools to safely and efficiently dissolve clots in a clinical setting."

This is a 3D rendering of a clot network (red) after sustaining damage from an ultrasound stimulated bubble. The bubble violently penetrated the clot and this fluorescence imaging technique shows the path of damaged clot fibers left in its wake. Also shown here is evidence of fluid from outside the clot being transported within (yellow), along the bubble's path. This implies that if clot busting drugs were present, penetrating bubbles could aid in destroying the clot from the inside out. Credit: Credit: Christopher Acconcia

Explore further: Clot-dissolving bubbles to treat strokes?

More information: The article, "Interactions between ultrasound stimulated microbubbles and fibrin clots" by Christopher Acconcia, Ben Y. C. Leung, Kullervo Hynynen and David E. Goertz appears in the journal Applied Physics Letters: dx.doi.org/10.1063/1.4816750

Related Stories

Clot-dissolving bubbles to treat strokes?

September 25, 2013

(Medical Xpress)—Researchers are using computer simulations to investigate how ultrasound and tiny bubbles injected into the bloodstream might break up blood clots, limiting the damage caused by a stroke in its first hours.

In surprise finding, blood clots absorb bacterial toxin

December 9, 2013

Blood clots play an unexpected role in protecting the body from the deadly effects of bacteria by absorbing bacterial toxins, researchers at the University of California, Davis, have found. The research was published Dec. ...

Ultrasound waves aid in rapid treatment of DVT

November 23, 2008

The use of ultrasound waves for deep vein thrombosis (DVT) may help dissolve blood clots in less time than using clot-busting drugs alone, according to researchers at Emory University. The study will be presented Sunday, ...

Recommended for you

Astronomers use bubbles to look for WIMPs

May 23, 2017

Invisible, imperceptible and yet far more common than ordinary matter, dark matter makes up an astounding 85 percent of the universe's mass. Physicists are slowly but steadily tracking down the nature of this unidentified ...

Weyl fermions exhibit paradoxical behavior

May 23, 2017

Theoretical physicists have found Weyl fermions to exhibit paradoxical behavior in contradiction to a 30-year-old fundamental theory of electromagnetism. The discovery has possible applications in spintronics. The study ...

Turmoil in sluggish electrons' existence

May 22, 2017

An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.