Elucidating heavy precipitation events

November 29, 2013, CNRS
Comparison of simulated precipitation (in mm) in two simulations carried out with the Meso-NH model for a heavy rainfall event on 6 September 2010. In the upper simulation, the value of the time tendency of raindrop evaporation was reduced by 50%; in the lower simulation, the value of the tendency was increased by 50%. Credit: © LA

It is difficult to forecast heavy precipitation events accurately and reliably. The quality of these forecasts is affected by two processes whose relative importance has now been quantified by a team at the Laboratoire d'Aérologie (CNRS / Université Toulouse III-Paul Sabatier). The researchers have shown that these processes should be taken into account in low wind speed events. Their findings should help forecast these events, which repeatedly cause significant damage, especially in south-eastern France. They are first published online the November 28, 2013 in the Quarterly Journal of the Royal Meteorological Society.

Nearly every autumn, the countries of the Mediterranean Basin are stricken by and flash floods, which endanger populations and can cause significant property damage. South-eastern France is frequently affected by these events, caused by the interaction between topography and the still warm and moisture-laden air masses from the Mediterranean Sea. Weather forecasters are able to predict these events and issue weather warnings. However, simulating their evolution on different time scales remains difficult, just like forecasting the strength and location of precipitation, the two parameters that broadly determine the extent of flooding.

Researchers from CNRS and Université Toulouse III-Paul Sabatier at the Laboratoire d'Aérologie investigated two phenomena that play a key role in meteorology: the microphysics of hydrometeors (rain, snow and ice pellets) and atmospheric turbulence. The aim was to determine the relative effect of these two processes on forecast sensitivity. To do this, the scientists looked at five heavy rainfall episodes that took place between September 2010 and November 2011 in south-eastern France and for which measured data was available. For each event, ensemble simulations were carried out using the Meso-NH atmospheric research model, giving more or less importance to each of the two processes.

Two main results emerged. For high wind speed events, precipitation is scarcely affected by the perturbations introduced. It is therefore unnecessary to take account of these two processes to improve heavy precipitation forecasting. In this case, it is the interaction with the topography that determines the onset of precipitation. However, when wind speed is low, both the intensity of precipitation and its location (upstream of the topography) are far more sensitive to these two processes. In this case, the microphysics of hydrometeors and need to be better represented so as to improve forecast sensitivity.

These results suggest that in low wind speed situations, errors related to the representation of microphysical and turbulent processes make a significant contribution to the total error in the forecasting system. Taking greater account of these errors would improve heavy precipitation forecasting when is low. The study was also used to test a methodology that may be implemented as part of the HyMeX international research program, launched in 2010 for a period of ten years and coordinated by Météo-France and CNRS.

Explore further: Atmospheric rivers linked to severe precipitation in Western Europe

More information: Ensemble simulations with perturbed physical parameterisations: Pre-HyMEX case studies. Alan Hally, Evelyne Richard, Simon Fresnay and Dominique Lambert. Quarterly Journal of the Royal Meteorological Society. 28 November 2013. DOI: 10.1002/qj.2257

Related Stories

Statistically linking extreme precipitation to global warming

September 24, 2013

Extreme rainfall can have serious effects on societies and ecosystems. Increases in extreme precipitation events are predicted to occur as Earth's climate warms, in part because warmer air has greater capacity to hold moisture, ...

A new metric to help understand Amazon rainforest precipitation

August 14, 2013

In the Amazon rainforest, the chain of events that turns a small-scale process like a localized increase in evaporation into a towering storm cloud is long and twisted. To understand the complex dynamics that lead to precipitation, ...

Framework could improve southeast rainfall forecasts

November 20, 2013

Summer rainfall in the southeastern United States is vitally important to the region's agriculture, economy and ecology. But accurately forecasting how much rain may fall in an upcoming season can be tricky because of the ...

Flash floods predictions, subject to models' limitations

June 26, 2013

Flash floods are very localised weather events. They are mostly triggered by heavy rainfall. Typically, over a period of less than 12 hours. They occur very infrequently at any one place. But when they do, it is often with ...

Ahoy aquaplanet: Identifying model resolution shortcomings

August 5, 2013

By putting models through their paces in an all-water world, scientists at Pacific Northwest National Laboratory found highly scale-sensitive issues in regional climate modeling. In the first of two studies, two approaches ...

Recommended for you

Scientists capture sounds of volcanic thunder

March 15, 2018

Researchers report in a new study that they've documented rumblings of volcanic thunder for the first time, a feat considered nearly impossible by many volcanologists.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.