The long and rich life of tropical clouds: Understanding environmental conditions that help tropical clouds flourish

September 2, 2013
Tropical cloud systems contain moisture and heat that's transported into the atmosphere around the globe. When these systems form tropical cyclones and hurricanes, they batter coastal populations and affect weather and climate systems. Credit: NOAA

Scientists at Pacific Northwest National Laboratory uncovered another clue as to how tropical clouds live long and prosper. Moisture from the middle layer of the atmosphere, both before and after the clouds begin forming, is the determining factor for the lifetime of these cloud systems. When the researchers compared clouds of equal lifetime that initiate over land and over water, those over land were more intense than those beginning over the ocean, especially during the early stages. Contrary to previous studies, they found that wind shear-the change in wind speed and direction-has no discernible effect on the lifetime of the tropical cloud systems.

Tropical are the primary drivers of the global atmospheric circulation—a huge cycle of atmospheric energy and moisture transported around the Earth affecting both weather and climate. Some and interactions sustain tropical storm systems, others hurry their demise. Understanding how these clouds interact with their immediate environment and the processes that sustain them is fundamental to understanding the . These environmental tip-offs help scientists and planners better predict global atmospheric reactions to tropical systems and storms. This study presents a new method to identify these interactions and quantifies their impact on the lifetime of the cloud systems.

The researchers applied a cloud-tracking algorithm to tropical convective systems in a regional high-resolution weather prediction , the Advanced Research Weather Research and Forecasting (WRF) model. Then, the environmental conditions before and after those convective systems were initiated over ocean and land. The researchers followed the systems during their entire lifecycle and quantified the comparative roles of several mechanisms of convection-environment interaction on the longevity of convective systems. They found that the statistics of lifetime, maximum area and propagation speed of the simulated deep convection agree well with geostationary satellite observations.

Both over the ocean and land, the research found that convection transports momentum vertically to increase low-level shear and decrease upper-level shear. However, there is no discernible effect of shear on the lifetime of either convective system.

"Several studies have proposed that affects the lifetime positively, several others say it affects negatively. We found that its effect is not significant," said Dr. Samson Hagos, atmospheric scientist and lead author of the research. "We found that much of the shear is related to vertical transport of momentum."

Researchers plan to further refine their model and examine other interactions using radar observation data from the Atmospheric Radiation Measurement (ARM) MJO Investigation experiment/Dynamics of MJO (AMIE/DYNAMO) field campaign.

Explore further: The short and the long of storms: Tracing a storm's life with a trifecta of data

More information: Hagos, S. et al. 2013. Environment and the Lifetime of Tropical Deep Convection in a Cloud-Permitting Regional Model Simulation, Journal of the Atmospheric Sciences 70(8):2409-2425. DOI: 10.1175/JAS-D-12-0260.1

Related Stories

A new metric to help understand Amazon rainforest precipitation

August 14, 2013

In the Amazon rainforest, the chain of events that turns a small-scale process like a localized increase in evaporation into a towering storm cloud is long and twisted. To understand the complex dynamics that lead to precipitation, ...

Recommended for you

2020 deadline to avert climate catastrophe: experts

June 28, 2017

Humanity must put carbon dioxide emissions on a downward slope by 2020 to have a realistic shot at capping global warming at well under two degrees Celsius, the bedrock goal of the Paris climate accord, experts said Wednesday.

Concurrent hot and dry summers more common in future: study

June 28, 2017

A combination of severe drought and a heatwave caused problems for Russia in the summer of 2010: fires tore through forests and peat bogs. Moscow was shrouded in thick smog, causing many deaths in the local population. At ...

Climate change impacts Antarctic biodiversity habitat

June 28, 2017

Ice-free areas of Antarctica - home to more than 99 per cent of the continent's terrestrial plants and animals - could expand by more than 17,000km2 by the end of this century, a study published today in Nature reveals.

The common insecticide poisoning our rivers and wetlands

June 28, 2017

Urban streams and wetlands play an important role in the proper functioning of our cities. They protect our houses from floods, provide green spaces for recreation, trap and breakdown pollutants and provide valuable habitats ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.