Hard materials: Carbon nitride for tribological application

September 25, 2013, Toyohashi University of Technology
Fig.1 Plasma assisted pulsed laser deposition with substrate heating.

Carbon nitride is an attractive material for its expected hardness of the hypothetical compound β-C3N4. On the other hand, amorphous carbon nitride (CNx) exhibits a low friction coefficient under certain conditions, a property that is promising for tribological application.

However, it is difficult to deposit on steel substrates due to adverse effects associated with carbon/ diffusion into the steel substrate at elevated temperatures during deposition.

Now, Toshiaki Yasui and colleagues at Toyohashi Tech show that thick layers of CNx can be coated onto steel substrate at elevated temperatures, and describe the mechanical characteristics of coating.

The CNx coatings were deposited on steel substrates by radio frequency plasma assisted pulsed with substrate heating. A pulsed Nd:YAG laser (532 nm, 30 mJ) was irradiated onto high purity graphite target. RF power (13.56 MHz, 60 W) was applied to substrate to generate nitrogen plasma around it. Polished steel substrates were heated up to 673 K by a ceramic heater.

The friction coefficient of the CNx coating decreased with RF power and substrate temperature. The minimum friction coefficient of 0.072 was achieved for SUJ2 substrates by high hardness of the CNx coating.

Hard materials: Carbon nitride for tribological application
Fig.2 Friction coefficient of CNx coating.

CNx coating could find applications as tribological materials for mechanical instruments.

Explore further: Airbrushing could facilitate large-scale manufacture of carbon nanofibers

More information: Yasui, T. et al. Carbon nitride deposition onto steel substrate by radio frequency plasma assisted pulsed laser deposition with substrate heating, Thin Solid Films, 523, 20-24 (2012). DOI: 10.1016/j.tsf.2012.05.060

Related Stories

Saws made of carbon

August 1, 2013

More material could be saved when manufacturing wafers in future. Ultra-thin saws made of carbon nanotubes and diamond would be able to cut through silicon wafers with minimum kerf loss. A new method makes it possible to ...

Antibacterial stainless steel created

July 19, 2011

Materials scientists at the University of Birmingham have devised a way of making stainless steel surfaces resistant to bacteria in a project funded by the Engineering and Physical Sciences Research Council which culminated ...

Recommended for you

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Simulations show how atoms behave inside self-healing cement

January 19, 2018

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a self-healing cement that could repair itself in as little as a few hours. Wellbore cement for geothermal applications has a life-span of only 30 ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.