$6 million CU-Boulder instrument to fly on Sept. 6 NASA mission to moon

August 29, 2013
$6 million CU-Boulder instrument to fly on Sept. 6 NASA mission to moon
A team of CU-Boulder faculty and students designed and built an instrument for NASA's 2013 LADEE mission

A $6 million University of Colorado Boulder instrument designed to study the behavior of lunar dust will be riding on a NASA mission to the moon now slated for launch on Friday, Sept. 6, from the agency's Wallops Flight Facility in Virginia.

The mission, known as the Lunar Atmosphere and Dust Environment Explorer, or LADEE, will orbit the moon to better understand its tenuous atmosphere and whether dust particles are being lofted high off its surface. The $280 million LADEE mission, designed, developed, integrated and tested at NASA's AMES Research Center in Moffett Field, Calif., will take about a month to reach the moon and another month to enter the proper elliptical orbit and to commission the instruments. A 100-day science effort will follow.

"We are ready and excited for launch," said CU-Boulder physics Professor Mihaly Horanyi of the Laboratory for Atmospheric and Space Physics, principal investigator for the Lunar Dust Experiment, or LDEX. "We think our instrument can help answer some important questions related to the presence and transport of dust in the ."

One unanswered question since the days of the Apollo program is why astronauts saw a pre-sunrise glow above the , said Horanyi, who directs LASP's Colorado Center for Lunar Dust and Atmospheric Studies. "The glow has been suggested to be caused by dust particles that were electrically charged by solar ultraviolet light, causing them to lift off from the moon's surface."

About the size of a small toaster oven, the LDEX instrument will be able to chart the existence, size and individual velocities of tiny dust particles as small as 0.6 microns in diameter. For comparison, a standard sheet of paper is about 100 microns thick. A collision between a dust particle and a hemisphere-shaped target on LDEX generates a unique electrical signal inside the instrument to allow scientists to detect individual particles, said Horanyi.

Horanyi said specks seemingly observed by astronauts hovering over the moon likely weren't clouds at all. "If you watch a cement truck on the highway, it seems to be carrying a dust cloud along with it. But what is actually happening is that every speck of dirt coming off the truck is falling onto the highway," he said.

$6 million CU-Boulder instrument to fly on Sept. 6 NASA mission to moon

"The specks have very short lifespans, and the cloud that appears to surround the truck is actually a continual rain of dust from the vehicle to the pavement," he said. "Similarly, the smallest lunar could also continually lift off and fall back onto the surface."

Knowing more about the behavior of lunar dust could be of use for future human expeditions to the moon, including potential colonization efforts. Learning more about also might help scientists better understand dust on other moons in the solar system—like Phobos and Deimos that orbit Mars – that have been suggested by some as possible initial landing posts for crewed missions headed to the Red Planet.

LADEE also is carrying an ultraviolet and visible light spectrometer, a neutral mass spectrometer and a lunar laser communications demonstration.

Astronauts walking on the moon sank into a shallow layer of dust, thought to be a product of millions of years of meteoric and interstellar particle bombardment, he said. "The beauty of physics is that we believe the same processes occur throughout the universe," he said. "What we see on the moon may well apply to Mercury, Phobos, Deimos or asteroids, which all have very tenuous atmospheres."

When the LADEE spacecraft is inserted into an elliptical orbit, its closest approach will be less than 20 miles from the lunar surface. "The closer we can get to the surface the better," he said.

"This is a very exciting mission that will answer an almost 50-year-old question in space science," said CU-Boulder graduate student Jamey Szalay, who is writing data analysis software for the mission that will allow the team to analyze science results immediately after data is received from the spacecraft. "Given the convenient duration of the mission and promising science return, I'm very fortunate to be a part of the science team—it's a dream project for any graduate student in space sciences to be working on."

Horanyi also is the principal investigator on CU-Boulder's Student Dust Counter, a simpler instrument than LDEX flying on NASA's New Horizons mission that was launched in 2006 to explore Pluto and the Kuiper Belt, a massive region beyond the planets containing icy objects left over from the formation of the solar system. The Student Dust Counter was designed, built, tested and operated entirely by students, primarily undergraduates, at LASP and has been collecting data for the past seven years. New Horizons is now more than 2.5 billion miles from Earth and will arrive at Pluto in two years.

CU-Boulder researcher David James, who now is working on LDEX, got his start helping to build SDC. "Although I was a student in a lab back then, it was almost like working in the private sector," said James, who eventually received his doctorate from CU-Boulder. "We were building an instrument that was going to Pluto. It was an amazing experience with huge responsibilities, it pushed us to do our best, and it definitely shaped who I am today."

The LDEX instrument, as well as many previous LASP instruments launched into space since the 1970s, will carry a laser engraving of the CU mascot, Ralphie the Buffalo, as well as the names of all university people who participated in the project, from students and scientists to engineers and administrative support staff. "It's like adding a touch of history to the mission, perhaps for good luck and pride," said Horanyi. "After all, this is the University of Colorado."

Explore further: CU-Boulder to build $6 million instrument for NASA lunar orbiter

Related Stories

NASA Goddard plays major role in NASA lunar mission

August 22, 2013

(Phys.org) —In partnership with NASA's Ames Research Center in Silicon Valley, Calif., Goddard's Wallops Flight Facility will launch the Lunar Atmosphere and Dust Environment Explorer known as LADEE in September, a robotic ...

Space laser to prove increased broadband possible

August 28, 2013

When NASA's Lunar Laser Communication Demonstration (LLCD) begins operation aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission managed by NASA's Ames Research Center in Moffett Field, Calif., it will ...

Recommended for you

Video: A colorful 'landing' on Pluto

January 20, 2017

What would it be like to actually land on Pluto? This movie was made from more than 100 images taken by NASA's New Horizons spacecraft over six weeks of approach and close flyby in the summer of 2015. The video offers a trip ...

Freeze-dried food and 1 bathroom: 6 simulate Mars in dome

January 20, 2017

Crammed into a dome with one bathroom, six scientists will spend eight months munching on mostly freeze-dried foods—with a rare treat of Spam—and have only their small sleeping quarters to retreat to for solace.

Image: Wavemaker moon Daphnis

January 20, 2017

The wavemaker moon, Daphnis, is featured in this view, taken as NASA's Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn's rings on Jan. 16, 2017. This is the closest view of the small ...

The evolution of massive galaxy clusters

January 20, 2017

Galaxy clusters have long been recognized as important laboratories for the study of galaxy formation and evolution. The advent of the new generation of millimeter and submillimeter wave survey telescopes, like the South ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.