UCSC acquires powerful new astrophysics supercomputer system

July 31, 2013 by Tim Stephens 
UCSC acquires powerful new astrophysics supercomputer system
The Hyades astrophysics computer system, seen from the front (left) and back (right), is the primary on-campus supercomputer used by astrophysics researchers in the departments of Astronomy and Astrophysics, Earth and Planetary Sciences, and Physics, as well as by computer scientists in the Baskin School of Engineering. (Photo by P. Madau)

State-of-the-art computer systems have been instrumental in making UC Santa Cruz one of the world's leading centers for computational astrophysics and planetary science. A new supercomputer recently installed on campus provides an order of magnitude improvement in the ability of researchers to address fundamental questions in cosmology and astrophysics. Its value is further enhanced by a high-capacity data storage system for archiving and sharing the results of astrophysical simulations.

The powerful new "Hyades" supercomputer will be used by UCSC researchers to simulate phenomena such as , , magnetic fields, , the evolution of galaxies, and how structure emerged in the cosmos after the big bang. The $1.5 million machine was funded by a National Science Foundation (NSF) Major Research Instrumentation grant of $910,000, augmented by campus contributions and favorable deals from vendors such as Dell and Intel.

Paired with the supercomputer is a Huawei Universal Distributed Storage (UDS) system that provides one petabyte of high-performance storage capacity. The Huawei UDS cloud storage system, on loan to the Center for Research in Storage Systems (CRSS) at the Baskin School of Engineering, is expected to become one of the largest repositories of astrophysical data outside of national facilities. Shawfeng Dong, scientist and computing cluster administrator for the Department of Astronomy and Astrophysics, oversaw the installation and integration of the Hyades supercomputer and Huawei storage system.

Piero Madau, professor of and principal investigator on the NSF grant, said, "Hyades is more than ten times better than our previous machine, and with the Huawei system providing storage for our , we can maximize the value of those results by making them available to the community."

Joel Primack, professor of physics at UCSC and director of the UC High-Performance AstroComputing Center (UC-HiPACC), explained that supercomputer simulations can generate such huge amounts of complex data that it becomes difficult to analyze them on the fly. An enormous amount of storage capacity is needed for the output of these simulations so that the results can be studied and shared with other researchers.

"The Huawei system will be used to store our astrophysics results, not only from Hyades but also from simulations that we run at the big national supercomputing facilities, such as at NASA Ames or Oak Ridge National Laboratory," Primack said. "Those facilities can only store the results for a limited time, and they also restrict access to them. Now, with the Huawei storage system, we can put our results on a local server."

The Theoretical Astrophysics at Santa Cruz (TASC) computational astrophysics group includes about 20 faculty and at least 50 postdoctoral researchers and graduate students in four departments: Applied Math and Statistics, Astronomy and Astrophysics, Earth and Planetary Sciences, and Physics. In addition, computer scientists at the CRSS will be studying the performance of the new Huawei UDS system. Huawei is among the industry sponsors of CRSS, an Industry/University Cooperative Research Center supported by NSF.

"We're interested in how scientists store and use big data in a system like Hyades," said CRSS executive director Andy Hospodor. "We have studied other operating environments and are very interested in learning about astrophysical data. Our faculty and students will find ways to improve the performance, reliability, and energy efficiency of such large-scale data systems."

With its petabyte storage capacity, the Huawei system provides an enormous increase in the data storage capabilities of UCSC's computational astrophysics group. Huawei has provided a similar UDS cloud for CERN, the European particle physics lab in Switzerland, to handle data from the Large Hadron Collider. UDS enables storage and sharing of big data on its mass object-based storage infrastructure, which employs high-density and energy-saving storage nodes based on ARM architecture, intelligently adjusts the workload at each node, and grows evenly with each capacity expansion.

The new Hyades supercomputer is much more powerful than the one it replaces (called Pleiades), but it occupies the same space and uses the same power in the UCSC data center. Hyades features 376 Intel Sandy Bridge Xeon CPUs (3008 x86_64 cores in total), 8 Nvidia K20 GPU computing accelerators, 3 Intel Xeon Phi 5110P accelerators, and 13 terabytes of memory. It has a peak speed of 60 teraflops (a teraflop is one trillion floating-point operations per second).

This mid-size high-performance computing system will support cutting-edge science and the training of the next generation of computational astrophysicists. It also enables researchers to hone their tools for high-resolution three-dimensional simulations run on much larger systems off campus. By demonstrating the efficiency of their codes on campus facilities, UCSC faculty successfully compete for time on some of the world's most powerful machines, such as those owned by NSF, NASA, and the Department of Energy.

"Having a local computing cluster is very important for developing the code to run on these supercomputers. They're hard to program, and having a local machine gives us a big leg up," Primack said.

Explore further: Supercomputer Titan to get world's fastest storage system

Related Stories

Supercomputer Titan to get world's fastest storage system

April 17, 2013

(Phys.org) —Officials at Oak Ridge National Laboratory (ORNL) have announced the selection of the Spider II data storage and retrieval system from DataDirect Networks (DDN) to replace the existing system on the Titan supercomputer. ...

Green 'Oakley Cluster' to double OSC computing power

March 19, 2012

Researchers using Ohio Supercomputer Center (OSC) resources can now conduct even more innovative academic and industrial research by accessing Ohio's newest energy-efficient, GPU-accelerated supercomputer system.

Recommended for you

A not-quite-random walk demystifies the algorithm

December 15, 2017

The algorithm is having a cultural moment. Originally a math and computer science term, algorithms are now used to account for everything from military drone strikes and financial market forecasts to Google search results.

FCC votes along party lines to end 'net neutrality' (Update)

December 14, 2017

The Federal Communications Commission repealed the Obama-era "net neutrality" rules Thursday, giving internet service providers like Verizon, Comcast and AT&T a free hand to slow or block websites and apps as they see fit ...

US faces moment of truth on 'net neutrality'

December 14, 2017

The acrimonious battle over "net neutrality" in America comes to a head Thursday with a US agency set to vote to roll back rules enacted two years earlier aimed at preventing a "two-speed" internet.

The wet road to fast and stable batteries

December 14, 2017

An international team of scientists—including several researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory—has discovered an anode battery material with superfast charging and stable operation ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.