Mars rover Opportunity passes half-way point to next destination

July 3, 2013 by Guy Webster
This view shows the terrain that NASA's Mars Exploration Rover Opportunity is crossing in a flat area called "Botany Bay" on the way toward "Solander Point," which is visible on the horizon. Credit: NASA/JPL-Caltech

(Phys.org) —NASA's Mars Exploration Rover Opportunity has driven more than half of the distance needed to get from a site where it spent 22 months to its next destination.

The rover has less than half a mile (800 meters) to go to finish a 1.2-mile (2-kilometer) dash from one crater-rim segment, where it worked since mid-2011, to another, where mission controllers intend to keep Opportunity busy during the upcoming Martian winter.

Opportunity departed the southern tip of the "Cape York" segment six weeks ago and headed south for "Solander Point." Both are raised portions of the western rim of 14-mile-wide (22-kilometer-wide) Endeavour Crater, offering access to older geological deposits than the rover visited during its first seven years on Mars. Opportunity was launched from Florida on July 7, 2003, EDT (July 8, UTC). It landed on Mars Jan. 24, 2004, PDT (Jan. 25, EDT and UTC).

A flatter area called Botany Bay separates Cape York from Solander Point.

"We are making very good progress crossing 'Botany Bay,'" said John Callas of NASA's Jet Propulsion Laboratory, Pasadena, Calif., who is project manager for the nearly decade-old mission.

The terrain is favorable for the trek.

"The surface that Opportunity is driving across in Botany Bay is polygonally fractured outcrop that is remarkably good for driving," said Brad Joliff, an Opportunity science team member and long-term planner at Washington University in St. Louis. "The plates of outcrop, like a tiled mosaic pavement, have a thin covering of soil, not enough to form the wind-blown ripples we've had to deal with during some other long treks. The outcrop plates are light-toned, and the cracks between them are filled with dark, basaltic soil and our old friends the 'blueberries.'"

The BB-size spherules nicknamed "blueberries" are hematite-rich, erosion-resistant concretions that Opportunity discovered at its landing site and continued seeing on much of the ground between there and Endeavour Crater.

The rise of Solander Point to the south gives the team a very visible destination during the drive. That destination offers both a tall cross section of rock layers for examination and also an expanse of terrain that includes a north-facing slope, which is favorable for the solar-powered to stay active and mobile through the coming Martian southern-hemisphere winter.

Explore further: Mars rover Opportunity trekking toward more layers

Related Stories

Mars rover Opportunity examines clay clues in rock

May 18, 2013

(Phys.org) —NASA's senior Mars rover, Opportunity, is driving to a new study area after a dramatic finish to 20 months on "Cape York" with examination of a rock intensely altered by water.

Nine-year-old Mars rover passes 40-year-old record

May 17, 2013

While Apollo 17 astronauts Eugene Cernan and Harrison Schmitt visited Earth's moon for three days in December 1972, they drove their mission's Lunar Roving Vehicle 19.3 nautical miles (22.210 statute miles or 35.744 kilometers). ...

Opportunity rover finds intriguing new spherules at Cape York

September 14, 2012

One of the most interesting discoveries made so far by the Opportunity rover on Mars has been the small round spherules or "blueberries" as they are commonly referred to, covering the ground at the rover's landing site. Typically ...

Recommended for you

Galaxy NGC 1132 has a disturbed hot halo, study finds

June 27, 2017

(Phys.org)—A new study recently published on arXiv.org reveals that the fossil group galaxy NGC 1132 (also known as UGC 2359) has a disturbed and asymmetrical hot halo. The findings provide new insights into the formation ...

New way to form close double black holes

June 27, 2017

A team of three Dutch astronomers from the University of Amsterdam and Leiden University found a new way to form two black holes that orbit each other for quite a while and then merge. Their publication with computer simulations ...

Arp 299: Galactic Goulash

June 26, 2017

What would happen if you took two galaxies and mixed them together over millions of years? A new image including data from NASA's Chandra X-ray Observatory reveals the cosmic culinary outcome.

Topsy-turvy motion creates light switch effect at Uranus

June 26, 2017

More than 30 years after Voyager 2 sped past Uranus, Georgia Institute of Technology researchers are using the spacecraft's data to learn more about the icy planet. Their new study suggests that Uranus' magnetosphere, the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.