Chemists' discovery could be breakthrough in developing new tools for cleaner air and energy production

March 5, 2013 by Vickie Chachere, University of South Florida
Clean air technologies
The metal-organic framework material at the center of a new discovery by chemists at the USF and KAUST is shown under a microscope. The crystals have been found to be a more efficient, less expensive and reusable material for carbon capture and separation, and is a promising breakthrough in developing better carbon-control technologies. Credit: USF/Mike Zawortko

( —Chemists at the University of South Florida and King Abdullah University of Science and Technology have discovered a more efficient, less expensive and reusable material for carbon dioxide (CO2) capture and separation.

The breakthrough could have implications for a new generation of clean-air technologies and offers new tools for confronting the world's challenges in controlling carbon.

Publishing this month in the journal Nature, the international group of scientists has identified a previously underused material – known as SIFSIX-1-Cu - that offers a highly efficient mechanism for capturing CO₂.

The discovery represents more than an improvement over existing in terms of carbon capture, said USF Chemistry Professor Mike Zaworotko, noting that the material also is highly-effective at carbon capture even in the presence of , a standard that other materials have not been able to meet. This makes it a promising candidate for real-world applications. Water normally interferes with CO₂ capture, but the material developed in the USF-KAUST project resists it.

"I hate to use the word 'unprecedented' but we have something unprecedented," Zaworotko said. "We sort of hit a sweet spot in terms of properties."

The discovery addresses one the biggest challenges of capturing CO2 before it enters the atmosphere: associated with the separation and purification of industrial commodities currently consumes around 15 percent of global energy production. The demand for such commodities is projected to triple by 2050, the researchers note.

The problem is pronounced in capturing CO2, which in addition to its notoriety with , is an impurity in natural gas, and other gas streams, they said.

In this animation, the carbon atoms stick to the metal-organic framework material. USF and KAUST researchers believe the material could become a more efficient and more effective means of capturing carbon emissions. Credit: Brian Space, USF chemist

The material is a crystal whose atoms form a three-dimensional lattice with holes that snare molecules of CO2 but allow other molecules in air to pass. SIFSIX-1-Cu is an adaptation of a material created more than 15 years ago and is named after the chemical component that leads to the special properties; its chemical name is hexafluorosilicate.

Porous SIFSIX materials are built from combinations of inorganic and organic chemical building blocks and are part of a general class of materials known as Metal-Organic Materials, or "MOMs".

The breakthrough is several years in the making and began with an undergraduate research project conducted by USF student Stephen Burd under Zaworotko's supervision. Now a graduate student in chemistry, Burd's initial testing of the material and discovery of its high-selectivity for CO2 then grew to involve an international research group involving USF chemists Brian Space, Shengqian Ma, Mohamed Eddaoudi (who is also a faculty member at KAUST) and graduate collaborator Patrick Nugent.

The research facilities at KAUST in Saudi Arabia combined with the multidisciplinary expertise in Eddaoudi's research group – which includes researchers Youssef Belmabkhout, Amy Cairns and Ryan Luebke - allowed the design of unique experiments that permitted the sorption (the physical and chemical process by which substances attach to each other) properties of this class of materials to be unveiled.

To confirm their findings, the researchers used supercomputer simulations in the National Science Foundation's XSEDE network.

"We work with the experimental groups in a back-and-forth process," Space said. "We tried to explain their data, and our results give them hints on how to change the way the material works."

Space's team used several supercomputers in the National Science Foundation's XSEDE network for this work. They initially used Pittsburgh Supercomputing Center's Blacklight to simulate the behavior of small numbers of gas molecules with each other and with the MOM material.

Predicting the exact behavior of even small numbers of molecules requires a huge amount of computer memory—more than one terabyte, greater than the RAM memory in a thousand brand-new iPads. Such calculations are a specialty of Blacklight, the largest "shared memory" computer in the world. The researchers then used the Blacklight results to simulate the behavior of the gasses and the MOMs in bulk on XSEDE computers Ranger, at the Texas Advanced Computing Center, and Trestles, at the San Diego Supercomputer Center.

The group believes the material has three potentially significant applications: carbon-capture for coal-burning energy plants; purification of methane in natural gas wells; and the advancement of clean-coal technology. Some 20 to 30 percent of the power output at a clean-coal plant is consumed by cleaning process. The new material could make those plants more efficient and put more power into the grid, the scientists predict.

The next step is to collaborate with engineers to determine how the materials can be manufactured and implemented for real-world uses.

Explore further: Scientific discovery offers 'green' solution in fight against greenhouse gases

More information: To read the full publication, "Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separations" visit the journal Nature here.

Related Stories

New CO2 'scrubber' from ingredient in hair conditioners

March 24, 2010

Relatives of ingredients in hair-conditioning shampoos and fabric softeners show promise as a long-sought material to fight global warming by "scrubbing" carbon dioxide (CO2) out of the flue gases from coal-burning electric ...

New material puts pressure on greenhouse gases

October 25, 2012

(—Researchers at the University of Nottingham in the United Kingdom recently discovered a novel material that could be used by sophisticated technologies to fight global warming. The study was funded in part by ...

Recommended for you

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Simulations show how atoms behave inside self-healing cement

January 19, 2018

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a self-healing cement that could repair itself in as little as a few hours. Wellbore cement for geothermal applications has a life-span of only 30 ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Mar 05, 2013
"Some 20 to 30 percent of the power output at a clean-coal plant is consumed by cleaning process.", yikes, I didn't realize it was such a steep premium.
1 / 5 (1) Mar 05, 2013
There is quite a bit used but the question I have is what do you do with the material once it totally fills up with co2?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.