Research to probe deep within a solar cell

February 25, 2013

Engineers and scientists from the University of Sheffield have pioneered a new technique to analyse PCBM, a material used in polymer photovoltaic cells, obtaining details of the structure of the material which will be vital to improving the cell's efficiency. The findings are published in Applied Physics Letters.

Working with the ISIS pulsed neutron and muon source at the Science and Technology Facilities Council Rutherford Appleton Laboratory, the researchers are the first to use a cutting-edge neutron scattering technique called SERGIS to analyse PCBM. The technique – still very much in development – has so far only been tested on samples with well-known, regular structures, such as diffraction gratings.

The experiment focused on crystallites of PCBM which were on the surface of a thin film of the as the researchers could then verify their findings using other analysis techniques, such as . But they believe the technique could in future be used to analyse the material's structure deep inside the active layers of a solar cell. This will enable them to understand how different impact on the cell's structure, and therefore its efficiency.

Dr Alan Dunbar from Sheffield's Faculty of Engineering explains: "The SERGIS technique uses polarised neutrons which are bounced off the sample being tested. Where the resulting neutrons end up and how their has changed tells us information about the structure within our samples. The advantage of this type of technique is that because neutrons only interact weakly with the sample we can probe much deeper where many microscopy techniques cannot see."

"This is the first time the technique has been used to look at this material which is of real interest to science. It enabled us to map the size of the PCBM crystallites and the distance between them, both properties which are key to improving efficiency."

Research into is one of many areas of energy research conducted at the University of Sheffield, including wind power, nuclear power, biofuels, district heating and carbon capture.

SERGIS – which stands for neutron spin echo resolved grazing incidence scattering – can only be conducted in a few places worldwide, among them the ISIS pulsed neutron and muon source in Oxfordshire.

Explore further: 'Cling-film' solar cells could lead to advance in renewable energy

Related Stories

Finding a buckyball in photovoltaic cell

September 28, 2010

Polymer-based photovoltaic cells have some real advantages compared to the currently used semiconductor-based cells. They are easy to make and the materials are cheap. The challenge is to figure out how to make efficient ...

Organic solar cell breakthrough

September 15, 2011

NPL scientists have achieved a significant breakthrough in the metrology of organic photovoltaics – a solar power technology. The research demonstrated a new type of atomic force microscopy that can 'see' down into a ...

First neutrons created at the ISIS Second Target Station

August 4, 2008

The UK's ISIS Second Target Station Project moved a major step closer to completion today when the first neutrons were created in the ISIS Second Target Station. After five years of planning and construction, the first neutrons ...

SNS, HFIR experiments help refine thin-film solar cells

September 2, 2011

(PhysOrg.com) -- Solar cells that convert sunlight into electricity could be a widely used renewable energy source. Getting to that point, though, requires breakthroughs in their cost and their efficiency at turning sunbeams ...

Recommended for you

Inventing a new kind of matter

March 24, 2017

Imagine a liquid that could move on its own. No need for human effort or the pull of gravity. You could put it in a container flat on a table, not touch it in any way, and it would still flow.

In a quantum race everyone is both a winner and a loser

March 24, 2017

Our understanding of the world is mostly built on basic perceptions, such as that events follow each other in a well-defined order. Such definite orders are required in the macroscopic world, for which the laws of classical ...

Physicist develops drip-free wine bottle

March 23, 2017

Drips are the bane of every wine drinker's existence. He or she uncorks a bottle of wine, tips it toward the glass, and a drop, or even a stream, runs down the side of the bottle. Sure, you could do what sommeliers in restaurants ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.