Organic solar cell breakthrough

September 15, 2011
Photoconducting Atomic Force Microscopy (pc-AFM) image of a smooth polymer-nanowire based organic solar cell

NPL scientists have achieved a significant breakthrough in the metrology of organic photovoltaics – a solar power technology. The research demonstrated a new type of atomic force microscopy that can 'see' down into a working organic photovoltaic cell and relate its three-dimensional nanoscale structure to its performance.

Photovoltaic have become a much more common sight over recent years, often installed on rooftops where they quietly convert sunlight into clean electricity for homes and businesses.

An organic photovoltaic cell is a type of solar cell that uses organic (carbon-based) electronics and could potentially be a cheaper, more efficient and flexible alternative to today's photovoltaic systems. The technology is on the verge of commercialisation but several obstacles remain, including a necessary increase in performance.

Many recent advances have occurred due to recognition of the pivotal role that morphology plays in efficiency, but it was previously difficult to measure exactly how form and structure affect electrical characteristics and therefore performance.

A schematic drawing of the set-up used for pc-AFM measurements.

This research demonstrated that it is possible to obtain structural and electrical information, both on the surface and below the surface to a depth of at least 20 nanometres in operating organic solar cells. The new measurement method is based on a technique called photoconducting atomic force microscopy (pc-AFM) that uses a nanoscale probe to measure topography and photocurrent generation at the same time.

This technique can provide direct correlation between the nanometre scale morphology of a working organic solar cell and its performance characteristics.

This breakthrough will improve understanding of the technology, allowing manufacturers to improve the efficiency of their products by optimising the nanometre scale structure of the organic photovoltaic material.

The work has benefited from strong links with Imperial College London, who contributed with their material and device fabrication expertise.

A manuscript describing the research has been published in Energy and Environmental Science.

Explore further: New record achieved with Konarka's Power Plastic photovoltaic material with 8.3% efficiency certification

Related Stories

Recommended for you

Research comes through with flying colors

April 25, 2017

Like a chameleon changing colors to blend into the environment, Lawrence Livermore researchers have created a technique to change the color of assembled nanoparticles with an electrical stimulant.

Nano-notch sends self-assembling polymers into a spiral

April 25, 2017

A simple circular or hexagonal pit written into silicon can be used to generate self-assembling polymer spirals thanks to the addition of a tiny notch in the template, report scientists in the launch issue of Nano Futures.

Freezing lithium batteries may make them safer and bendable

April 24, 2017

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method that could lead to lithium batteries that are safer, have longer battery life, and are bendable, providing ...

Graphene holds up under high pressure

April 24, 2017

A single sheet of graphene, comprising an atom-thin lattice of carbon, may seem rather fragile. But engineers at MIT have found that the ultrathin material is exceptionally sturdy, remaining intact under applied pressures ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.