Information theory helps unravel DNA's genetic code

September 12, 2012

'Superinformation,' or the randomness of randomness, can be used to predict the coding and noncoding regions of DNA.

DNA consists of regions called exons, which code for the synthesis of proteins, interspersed with noncoding regions called introns. Being able to predict the different regions in a new and unannotated genome is one of the biggest challenges facing biologists today.

Now researchers at the Indian Institute of Technology in Delhi have used techniques from to identify DNA introns and exons an order of magnitude faster than previously developed methods.

The researchers were able to achieve this breakthrough in speed by looking at how electrical charges are distributed in the bases.

This distribution, known as the , affects the stability, solubility, melting point, and other physio-chemical properties of DNA that have been used in the past to distinguish exons and introns.

The research team computed the "superinformation," or a measure of the randomness of the randomness, for the angles of the dipole moments in a sequence of nucleotides. For both double- and single-strand forms of DNA, the superinformation of the introns was significantly higher than for the exons.

Scientists can use information about the coding and noncoding regions of DNA to better understand the , potentially helping to predict how cancer and other diseases linked to DNA develop.

Explore further: Stability of mRNA/DNA and DNA/DNA duplexes modulates mRNA transcription

More information: "Dipole-entropy-based techniques for segmentation of introns and exons in DNA," is published in Applied Physics Letters, apl.aip.org/resource/1/applab/v101/i8/p083701_s1

Related Stories

New mechanism in the regulation of human genes

July 14, 2011

Scientists at the Technical University of Munich and the Helmholtz Zentrum Muenchen and along with their colleagues from the European Molecular Biology Laboratory (EMBL) in Heidelberg and the Centre for Genomic Regulation ...

Shedding light on the 'dark matter' of the genome

November 29, 2011

Most of the time, Stefano Torriani is a plant pathologist. His most recent research project revolved around the fungus Mycosphaerella graminicola where he analyzed a special class of genes that encode cell wall degrading ...

If junk DNA is useful, why is it not shared more equally?

January 31, 2011

The presence of introns in genes requires cells to process "messenger RNA" molecules before synthesizing proteins, a process that is costly and often error-prone. It was long believed that this was simply part of the price ...

Research reveals how cells process large genes

August 22, 2005

Important messages require accurate transmission. Big genes are especially challenging because they combine many coding segments (exons) that lie between long stretches of non-coding elements (introns). During processing, ...

Recommended for you

Single-photon detector can count to four

December 15, 2017

Engineers have shown that a widely used method of detecting single photons can also count the presence of at least four photons at a time. The researchers say this discovery will unlock new capabilities in physics labs working ...

A shoe-box-sized chemical detector

December 15, 2017

A chemical sensor prototype developed at the University of Michigan will be able to detect "single-fingerprint quantities" of substances from a distance of more than 100 feet away, and its developers are working to shrink ...

Complete design of a silicon quantum computer chip unveiled

December 15, 2017

Research teams all over the world are exploring different ways to design a working computing chip that can integrate quantum interactions. Now, UNSW engineers believe they have cracked the problem, reimagining the silicon ...

Real-time observation of collective quantum modes

December 15, 2017

A cylindrical rod is rotationally symmetric - after any arbitrary rotation around its axis it always looks the same. If an increasingly large force is applied to it in the longitudinal direction, however, it will eventually ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.