On-board mobile phone to power low-cost satellite

Mobile phone technology to power satellite
Phonesat during testing at near space altitude (approx 30km) late last year. Credit: NASA

(Phys.org)—A University of Queensland staff member is sending a satellite into space more powerful than the Curiosity Rover which recently landed on Mars.

The satellite, which measures 10cm x 10cm, is controlled by an on-board mobile phone five times more powerful than its larger space-faring cousin. It also has a camera four times more powerful.

Michael Kehoe, a UQ staff member with (ITS) and a final year student of the School of Information Technology and Electrical Engineering (ITEE) recently completed a five-week internship with in California.

He was tasked with designing a satellite that used a mobile phone as its on-.

"This is a that will be used for a range of later designs," said Mr Kehoe.

"The satellite uses an attitude determinate control system (ADCS) written by fellow UQ graduate Jasper Wolfe to stop the satellite from spinning and alter its path in orbit," he said.

"Because it uses a common mobile phone as its central processor, I've been able to incorporate some really fun ideas into the satellite. I'll be able to take temperature, and heading readings using the phone's sensors and photos using the phone's camera."

Despite being controlled by a mobile phone, the satellite is not able to phone home.

"Unfortunately there's no reception in space, so we'll be using a high-powered radio link to receive data from the satellite," said Mr Kehoe.

Tracking of the satellite is being set up in America with NASA and in Australia, with the assistance of ITEE. Tracking equipment on top of the Parnell building will monitor the satellite from launch on November 25 to re-entry 12 days later.

The project provides a proof of concept for low cost, rapid design iteration space craft. Total component costs for the satellite are $7800, opposed to Curiosity's $2.5 billion.

"An example of why this is important can be seen in the Curiosity Rover which landed in August on Mars," said Mr Kehoe.

"Design work started eight years ago and used cutting-edge technology at the time, but by launch date a common had more processing power and better camera. If we can shorten the time it takes to build spacecraft, we can decrease cost and increase the quality of what goes into space."

Explore further

ICO comm satellite to launch in May 2007

More information: open.nasa.gov/plan/phonesat/
Citation: On-board mobile phone to power low-cost satellite (2012, September 27) retrieved 2 December 2020 from https://phys.org/news/2012-09-on-board-mobile-power-low-cost-satellite.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments