NASA sees Sun send out mid-level solar flare

July 19, 2012
NASA sees sun send out mid-level solar flare
This image was captured by NASA's Solar Dynamics Observatory (SDO) on July 19, 2012, of an M7.7 class solar flare. The image represents light in the 131 Angstrom wavelength, which is particularly good for seeing flares, and which is typically colorized in teal. Credit: NASA/SDO

The sun emitted a mid-level solar flare on July 19, 2012, beginning at 1:13 AM EDT and peaking at 1:58 AM. Solar flares are gigantic bursts of radiation that cannot pass through Earth's atmosphere to harm humans on the ground, however, when strong enough, they can disrupt the atmosphere and degrade GPS and communications signals.

The flare is classified as an M7.7 flare. This means it is weaker than the largest flares, which are classified as X-class. M-class flares can cause brief radio communications blackouts at the poles.

Increased numbers of flares are currently quite common, since the sun's standard 11-year activity cycle is ramping up toward , which is expected in 2013. It is quite normal for there to be many flares a day during the sun's peak activity.

Updates will be provided as they are available on the flare and whether there was an associated Earth-directed coronal mass ejection (CME), another solar phenomenon that can send into space and affect electronic systems in satellites and on Earth.

Explore further: Solar flares: What does it take to be X-class?

More information: What is a solar flare? What is a coronal mass ejection? For answers to these and other space weather questions, please visit the Spaceweather Frequently Asked Questions page at: http://www.nasa.gov/mission_pages/sunearth/spaceweather/index.html

Related Stories

Solar flares: What does it take to be X-class?

August 10, 2011

Solar flares are giant explosions on the sun that send energy, light and high speed particles into space. These flares are often associated with solar magnetic storms known as coronal mass ejections (CMEs). The number of ...

Space Image: Sunspots and solar flares

March 21, 2012

(PhysOrg.com) -- NASA's Solar Dynamics Observatory (SDO) captured this image of an M7.9 class flare on March 13, 2012 at 1:29 p.m. EDT. It is shown here in the 131 Angstrom wavelength, a wavelength particularly good for seeing ...

Classifying solar eruptions

January 26, 2012

(PhysOrg.com) -- Solar flares are giant explosions on the sun that send energy, light and high speed particles into space. These flares are often associated with solar magnetic storms known as coronal mass ejections (CMEs). ...

The Sun blasts out an X1-Class solar flare

July 9, 2012

An active region on the Sun, AR1515, has been putting on quite a show over the last 8 days, sending out all sorts of solar flares. Scientists were sure the huge sunspot was building up to produce an X-class explosion, and ...

Sun releases a powerful X5 flare

March 7, 2012

Active Region 1429 unleashed an X5.4-class solar flare early this morning at 00:28 UT, as seen in this image by NASA’s Solar Dynamics Observatory (AIA 304). The eruption belched out a large coronal mass ejection (CME) ...

Sun unleashes powerful X-class solar flare

March 6, 2012

The Sun has been quiet recently but early today (04:13 UTC on March 5, 2012) it unleashed a powerful X1-class solar flare and coronal mass ejection. The latest estimates indicate the CME will probably miss Earth, but hit ...

Recommended for you

Eclipse 2017: Science from the moon's shadow

December 11, 2017

On Dec. 11, 2017, six researchers discussed initial findings based on observations of the Sun and on Earth gathered during the solar eclipse that stretched across North America on Aug. 21, 2017. Ranging from new information ...

Unravelling the mysteries of extragalactic jets

December 11, 2017

University of Leeds researchers have mathematically examined plasma jets from supermassive black holes to determine why certain types of jets disintegrate into huge plumes.

The initial mass function

December 11, 2017

The gas and dust in giant molecular clouds gradually come together under the influence of gravity to form stars. Precisely how this occurs, however, is incompletely understood. The mass of a star, for example, is by far the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.