Rocket sled tests are technology pathway to safely land humans, habitats and cargo on Mars

June 8, 2012 By Kim Newton
The Low-Density Supersonic Decelerator Project will test inflatable decelerators and advanced parachutes in a series of rocket sled, wind tunnel, and rocket-powered flight tests to slow spacecraft prior to landing. This technology will allow NASA to increase landed payload masses, improve landing accuracy and increase the altitude of safe landing-sites. Credit: NASA

( -- Traveling 300 million miles through deep space to reach the planet Mars is difficult; successfully landing there is even harder. The process of entering the Red Planet's atmosphere and slowing down to land has been described as "six minutes of terror."

During the first four minutes of entry, friction with the atmosphere slows a spacecraft considerably. But at the end of this phase, the vehicle is still traveling at over 1,000 mph with only 100 seconds left before landing. Things need to happen in a hurry. A parachute opens to slow the spacecraft down to "only" 200 mph, but now there are only seconds left and the spacecraft is approximately 300 feet from the ground. From there, the spacecraft may use rockets to provide a gentle landing on the surface, airbags to cushion the impact of a free fall or a combination of rockets and tethers to lower a rover to the surface.

Landing that are large enough to bring humans and sustain their survival on the is still beyond our capability. The same parachute design developed for the Viking missions in the 1970's has been used for all U.S. missions to the surface of Mars, including the Curiosity rover that will land in August of this year. To conduct advanced exploration missions in the future, however, must advance technology to a new level of sophistication.

"We have now outgrown that capability and need to develop a larger parachute that will enable a larger payload," said Mark Adler, Project Manager for a new task at the Jet Propulsion Laboratory in Pasadena, Calif.

Enter the Low-Density Supersonic Decelerator Project, an ambitious technology development and demonstration effort the likes of which has not been attempted since before the Viking missions to Mars in the 1970's. The project will test inflatable decelerators and advanced in a series of rocket sled, wind tunnel, and rocket-powered flight tests.

The Low-Density Supersonic Decelerator Project is managed by JPL for NASA's Office of the Chief Technologist in Washington. The mission is one of nine missions reporting to the Technology Demonstration Missions Program managed at the NASA Marshall Space Flight Center in Huntsville, Ala.

The project includes three decelerators. Two are inflatable -- very large (20 feet and 26 feet in diameter, respectively), durable, balloon-like pressure vessels that inflate around the perimeter of the entry vehicle to enhance drag in the Martian atmosphere at supersonic speeds (greater than Mach 3.5) and slow the vehicle to Mach 2. The third device is a parachute measuring 110 feet in diameter that will further slow the entry vehicle from Mach 2, or nearly 1,100 mph, to less than 175 mph. All three devices will be the largest of their kind ever flown at such high supersonic speeds.

These kinds of devices are often tested in a wind tunnel prior to flight; however, the parachute is so large that it will not fit inside any existing and the inflatable decelerators are too large for current supersonic wind tunnels. Thus, a series of rocket sled tests will begin early next year at the U.S. Naval Air Weapons Station at China Lake to replicate the high aerodynamic forces each of these structures would experience during entry and descent at Mars. One set of tests will accelerate an aeroshell 15 feet in diameter to 300 mph in just a few seconds using a rocket sled.

The inflatable decelerator will then be deployed to simulate the stresses it would see during flight. Another set of tests will attach a parachute to the rocket sled to verify that the parachute will be able to withstand the forces expected during supersonic flight. The technology development effort will culminate in a series of , in which an Apollo-sized capsule is lifted to an altitude of 120,000 feet -- to simulate the thin Martian atmosphere -- using a balloon and accelerated to Mach 4 using a rocket. The decelerator systems are then tested almost exactly as they would be used at Mars, enabling future missions to confidently use these technologies to land there.

Together, these new decelerators can almost double the payload mass that we are able to land on Mars. Also, because they slow the spacecraft more quickly, they will increase altitudes at which payloads can be landed by 6,500-9,800 feet, increasing the accessible surface area we can explore to nearly three quarters of the surface of Mars. They can also improve landing accuracy from more than six miles to just over 1.5 miles. All these factors will increase the capabilities and robustness of robotic and human explorers on Mars. The tests conducted by the Jet Propulsion Laboratory represent the first steps on the technology pathway to land humans, habitats and cargo safely on Mars. Rocket sled testing will continue through 2012, with a flight demonstration scheduled eighteen months later to advance the technology to flight readiness level.

NASA continues to develop space technologies such as these to enable future deep space missions with exciting new capabilities for humans to explore and discover.

Explore further: NASA fires up rocket sled hardware at China Lake

More information:

Related Stories

NASA fires up rocket sled hardware at China Lake

March 30, 2012

( -- NASA recently performed a trial run on a rocket sled test fixture, powered by rockets, to replicate the forces a supersonic spacecraft would experience prior to landing.

High speed at the edge of space

July 1, 2011

Students from the Cambridge University Spaceflight team (CUSF) have successfully tested model parachutes for the ExoMars lander. The ExoMars lander project is a European-led robotic mission to Mars. Working in conjunction ...

Rocket to Launch Inflatable Re-entry Capsule

August 14, 2009

( -- Inflatable aircraft are not a new idea. Hot air balloons have been around for more than two centuries and blimps are a common sight over many sports stadiums. But it's hard to imagine an inflatable spacecraft.

No Speed Limit on Mars

April 7, 2008

It's a good thing there's no speed limit on Mars, because the next parachute to fly to the red planet will deploy faster than you can legally drive on a California freeway.

Three generations of rovers with crouching engineers

January 20, 2012

( -- Two spacecraft engineers join a grouping of vehicles providing a comparison of three generations of Mars rovers developed at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The setting is JPL's Mars Yard ...

Recommended for you

No alien 'signals' from cigar-shaped asteroid: researchers

December 14, 2017

No alien signals have been detected from an interstellar, cigar-shaped space rock discovered travelling through our Solar System in October, researchers listening for evidence of extraterrestrial technology said Thursday.


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Jun 08, 2012
Most people don't understand how hard it is to get down on Mars, or why. Either zero atmosphere, like Luna, or a nice thick atmosphere are much easier. Mars has just enough atmosphere to cause difficulties from heat but not enough atmosphere to use wings and parachutes without a rocket at the end. The timing of each step of the landing is so unforgiving, and each of the steps is critical, leaving virtually no wiggle room.
Lex Talonis
not rated yet Jun 08, 2012
They could ask Jesus to move out of low earth orbit here, and give them a hand there.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.