ALMA reveals constituent of a galaxy at 12.4 billion light-years away

June 22, 2012
Image: ALMA

An international research team, led by Associate Professor Tohru Nagao from Kyoto University, and including researchers from Japan and Europe, has observed a "submillimeter galaxy" located about 12.4 billion light-years away using ALMA (Atacama Large Millimeter/submillimeter Array), and has successfully detected an emission line from nitrogen contained in that galaxy.

Comparisons between the data obtained by ALMA and numerical models revealed that the elemental composition of this galaxy in the early universe, at only 1.3 billion years after the Big Bang, was already close to the of the present universe.

This result suggests that intense star formation activities had occurred in the early universe. A submillimeter galaxy is a type of galaxy which has intense star formation activity and is covered by large amounts of dust which block visible light. This situation hampers detailed observation of the galaxy with optical telescopes, such as the . ALMA observes celestial objects at millimeter wavelength, which penetrates though dust clouds. In addition, ALMA also has extraordinary sensitivity, which is capable of catching even extremely faint radio signals.

This is the result with one of the most distant galaxies ALMA has ever observed.

Explore further: Astronomers detect vast amounts of gas and dust around black hole in early universe

Related Stories

ALMA turns its eyes to Centaurus A

May 31, 2012

(Phys.org) -- A new image of the galaxy Centaurus A, made with the Atacama Large Millimeter/submillimeter Array (ALMA), shows how the observatory allows astronomers to see through the opaque dust lanes that obscure the galaxy's ...

The turbulent birth of super star clusters in galaxy mergers

February 10, 2012

By combining two of the most advanced telescopes in the world -- the new Atacama Large Millimeter Array (ALMA) and the Very Large Telescope (VLT) of ESO -- a team of French astronomers from the Institut d'astrophysique spatiale ...

Studying the Past, Pioneering the Future

June 13, 2005

Astronomers are meeting this week in Cambridge, Mass., to discuss recent advances generated by a new astronomical facility-the Submillimeter Array (SMA) on Mauna Kea, Hawaii. A joint project of the Smithsonian Astrophysical ...

Worldwide effort bringing ALMA telescope into reality

February 15, 2008

In the thin, dry air of northern Chile's Atacama Desert, at an altitude of 16,500 feet, an amazing new telescope system is taking shape, on schedule to provide the world's astronomers with unprecedented views of the origins ...

Intense Star Formation in the Early Universe

April 2, 2010

(PhysOrg.com) -- Distant galaxies are not only far away in space. Because it takes time for their light to reach us, they are also very far away in time -- snapshots from the distant past.

Recommended for you

Freeze-dried food and 1 bathroom: 6 simulate Mars in dome

January 20, 2017

Crammed into a dome with one bathroom, six scientists will spend eight months munching on mostly freeze-dried foods—with a rare treat of Spam—and have only their small sleeping quarters to retreat to for solace.

Image: Wavemaker moon Daphnis

January 20, 2017

The wavemaker moon, Daphnis, is featured in this view, taken as NASA's Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn's rings on Jan. 16, 2017. This is the closest view of the small ...

Video: A colorful 'landing' on Pluto

January 20, 2017

What would it be like to actually land on Pluto? This movie was made from more than 100 images taken by NASA's New Horizons spacecraft over six weeks of approach and close flyby in the summer of 2015. The video offers a trip ...

The evolution of massive galaxy clusters

January 20, 2017

Galaxy clusters have long been recognized as important laboratories for the study of galaxy formation and evolution. The advent of the new generation of millimeter and submillimeter wave survey telescopes, like the South ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

theon
2.3 / 5 (3) Jun 22, 2012
Also this observation supports the top-down theory of structure formation.
Husky
not rated yet Jun 22, 2012
Hopefully they get to see fingerprints of much theorised population III stars
kevinrtrs
1.2 / 5 (9) Jun 23, 2012
This result suggests that intense star formation activities had occurred in the early universe

There is the obvious alternative explanation which fits far better than an unobserved accelerated star formation phenomenom:

The observed galaxy was born at the same time as the rest of the known universe.

How else would the elemental composition be the same, unless a very substantial supportive observation can confirm that stars can have an accelerated rate of formation?
What is there that would create such a difference between that galaxy and the Milky Way for instance? If anything, given the nebular theory of star formation, one would expect a far lower rate of star formation so early in the universe. Of course that relies on whether the nebular theory is an accurate explanation of how stars form in the first place.
Tuxford
1 / 5 (5) Jun 26, 2012
Just another knock against the Big Bang Fantasy? Should not the evidence lead to the question of whether the stellar evolution model is indeed wrong? Should not the preponderance of new evidence support the Fantasy, rather than challenge it? I just don't understand the stubborn reluctance to reconsider past conclusions.

http://phys.org/n...rse.html

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.