Research shows rats have best bite of rodent world

April 27, 2012, University of Liverpool

Scientists at the University of Liverpool have found that mice and rats have evolved to gnaw with their front teeth and chew with their back teeth more successfully than rodents that 'specialise' in one or other of these biting mechanisms.

Researchers designed a computer model to simulate the bite of rats to understand whether their or muscle arrangement was a major factor in their evolutionary success and global dominance, making them one of the most common in the world.

Research has already shown that rats and mice can both chew and gnaw, whereas other rodents, such as squirrels, specialise in gnawing, and some, like guinea pigs, specialise in chewing. To understand whether the rat's ability to do both made its bite more effective, the Liverpool team took the of rats, squirrels and and fed them into a computer model to simulate the different biting mechanisms.

They also created virtual animals with a rat skull and squirrel muscles, for example, to investigate whether it was adaptations of the skull or jaw muscles that gave rats their biting abilities. The findings, published in the journal , showed that it is the rat's muscles that increase bite efficiency, allowing it to gnaw and chew with more success than species that specialise in just one of these methods.

Dr Nathan Jeffery, from the University's Institute of Ageing and Chronic Disease, said: "Mice and rats belong to a group of rodents called the myomorphs, which are amongst the most successful of all mammals. With over 1000 species, comprising nearly a quarter of all known , they live in a wide variety of habitats on every continent, except Antarctica."

Dr Philip Cox, co-author of the research, added: "Since the Eocene era, approximately 56 to 34 million years ago, rodents have been adapting their skulls and jaw muscles in, what we might call an evolutionary race. A group of rodents called sciuromorphs, which includes the squirrel, began to specialise in gnawing adaptations, and the hystricomorphs, including the guinea pig, chose chewing. The myomorphs, the rats and the mice, however, adapted to both chewing and gnawing.

"We wanted to understand the of mice and rats and hypothesised that their generalised feeding behaviour played a significant role. Through using reverse engineering techniques we were able to recreate the bite of the rat, as well as test whether its success was attributed to the arrangement of their skull or ."

Dr Jeffery said: "We expected that the rats we created in the computer model would be more versatile, but less effective, than the specialist squirrel and guinea pig – you would not expect a triathlon swimmer to beat, for example, a dedicated 1500m swimmer.

"The results, however, showed that the way rat muscles have adapted over time, has increased their ability to chew more effectively than a guinea pig and gnaw better than a squirrel, even though these two species are specialists in these kinds of jaw movements. This goes some way to explaining why and mice are so successful, as well as destructive, as their versatile feeding behaviour allows them to eat through a wide variety of materials efficiently."

Explore further: Smelling a rat to catch a rat

Related Stories

Smelling a rat to catch a rat

March 24, 2008

A novel experiment using laboratory rats to attract wild rats could pave the way for “rat perfumed” bait capable of reducing the millions of rats threatening New Zealand’s native species, say Massey conservation researchers.

Now that's what I call a rat

July 26, 2010

Archaeological research in East Timor has unearthed the bones of the biggest rat that ever lived, with a body weight around 6 kg. The cave excavations also yielded a total of 13 species of rodents, 11 of which are new to ...

Bush rats fight back

November 10, 2009

( -- Sydney's native bush rats were unintended victims of a campaign to exterminate foreign black rats during a plague epidemic in 1900, according to new research by scientists who plan to reintroduce the native ...

Recommended for you

Elephants resist cancer by waking a zombie gene

August 14, 2018

An estimated 17 percent of humans worldwide die from cancer, but less than five percent of captive elephants—who also live for about 70 years, and have about 100 times as many potentially cancerous cells as humans—die ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (2) Apr 27, 2012
REALLY!!!! No wonder we are trillions in debt! What a waste!
not rated yet Apr 28, 2012
No mention of the holes that squirrels have in their gums ? That in itself is a unique trait that is not shared by other rodents, afaik.

5 / 5 (1) Apr 30, 2012
Well done Thadieus.In Liverpool, we call that foot in mouth disease! have a word with John Bishop- he'll put you in his act.On a neater comment, Where is the hole in squirrel gums? I believe a hole between teeth would be to separate food particles between the two crushing and biting activities. Look at the diastema in sheep.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.