Proteogenomic strategies help refine annotations of three Yersinia strains

April 12, 2012
3-D representation of Y. pestis, the cause of bubonic plague.

(Phys.org) -- Strains of bacteria from the genus Yersinia are pathogenic with a wide virulence range -- Y. pseudotuberculosis causes intestinal distress, and Y. pestis causes the plague.

To better understand and potentially design ways to mitigate the effects of Yersinia on human health, a research team took on the task of refining the genome maps of three Yersinia strains.

This annotation process used the and , or collections of proteins and transcripts present, to discover new information about the genome.

The team used both proteomic and microarray data to study the highly related pathogenic Yersinia strains, Y. pestis CO92, Y. pestis Pestoides F, and Y. pesudotuberculosis PB1/+.

Each bacteria was grown under conditions relevant to disease, and samples were collected through time. Each proteomic sample was subjected to digestion then strong cation exchange fractionation with analysis on one of EMSL’s mass spectrometers.

Peptide data were searched against translations of all six possible reading frames of each genome using SEQUEST software to identify the proteins present in each bacteria sample.

Excitingly, data confirmed the validity of nearly 40% of the computationally predicted genes and discovered 28 novel proteins expressed under conditions relevant to infections.

In addition, 68 previously identified protein coding sequences were shown to be invalid. This new multi-faceted approach layers several types of evidence and substantially improves the genome annotation process.

Importantly, the team’s work established refined genome annotations that provide essential information needed for a better understanding of how the plague functions, may provide new targets for therapeutics, and should speed the characterization of other pathogenic bacteria.

Explore further: From mild-mannered to killer plague: New study explains plague's rapid evolution

More information: Rutledge AC, et al. 2012. " Comparative Omics-Driven Genome Annotation Refinement: Application across Yersiniae." PLoS One 7(3):e33903. doi:10.1371/journal.pone.0033903

Related Stories

Plague proteome reveals proteins linked to infection

November 22, 2006

Recreating growth conditions in flea carriers and mammal hosts, Pacific Northwest National Laboratory scientists have uncovered 176 proteins and likely proteins in the plague-bacterium Yersinia pestis whose numbers rise ...

How plague-causing bacteria disarm host defense

May 24, 2007

Effector proteins are the bad guys that help bacterial pathogens do their job of infecting the host by crippling the body's immune system. In essence, they knock down the front door of resistance and disarm the cell's alarm ...

Mimic molecules to protect against plague

July 4, 2008

Bacteria that cause pneumonic plague can evade our first-line defences, making it difficult for the body to fight infection. In fact, a signature of the plague is the lack of an inflammatory response. Now, scientists have ...

Recommended for you

Ants need work-life balance, research suggests

January 16, 2017

As humans, we constantly strive for a good work-life balance. New findings by researchers at Missouri University of Science and Technology suggest that ants, long perceived as the workaholics of the insect world, do the same.

New tools will drive greater understanding of wheat genes

January 16, 2017

Howard Hughes Medical Institute scientists have developed a much-needed genetic resource that will greatly accelerate the study of gene functions in wheat. The resource, a collection of wheat seeds with more than 10 million ...

How China is poised for marine fisheries reform

January 16, 2017

As global fish stocks continue sinking to alarmingly low levels, a joint study by marine fisheries experts from within and outside of China concluded that the country's most recent fisheries conservation plan can achieve ...

Common crop chemical leaves bees susceptible to deadly viruses

January 16, 2017

A chemical that is thought to be safe and is, therefore, widely used on crops—such as almonds, wine grapes and tree fruits—to boost the performance of pesticides, makes honey bee larvae significantly more susceptible ...

SMiLE-seq: A new technique speeds up genetics

January 16, 2017

Scientists at EPFL have developed a technique that can be a game-changer for genetics by making the characterization of DNA-binding proteins much faster, more accurate, and efficient.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.