'Backpacking' bacteria

March 29, 2012

To the ranks of horses, donkeys, camels and other animals that have served humanity as pack animals or beasts of burden, scientists are now enlisting bacteria to ferry nano-medicine cargos throughout the human body. They reported on progress in developing these "backpacking" bacteria -- so small that a million would fit on the head of a pin -- here today at the 243rd National Meeting & Exposition of the American Chemical Society (ACS).

"Cargo-carrying bacteria may be an answer to a major roadblock in using nano-medicine to prevent, diagnose and treat disease," David H. Gracias, Ph.D., leader of the research team said. Gracias explained that nanotechnology is the engineering of ultra-small machines and other devices. These devices generally lack practical self-sustaining motors to move particles of medication, sensors and other material to diseased parts of the body. So why not attach such cargo to bacteria, which have self-propulsion systems, and have them hike around the ?

"Currently, it is hard to engineer microparticles or nanoparticles capable of self-propelled motion in well-defined trajectories under biologically relevant conditions," Gracias said. He is with Johns Hopkins University in Baltimore, Maryland. "Bacteria can do this easily, and we have established that bacteria can carry cargo."

In addition, bacteria can respond to specific biochemical signals in ways that make it possible to steer them to desired parts of the body. Once there, bacteria can settle down, deposit their cargo and grow naturally. Bacteria already live all over the body, particularly in the large intestine, with bacterial cells outnumbering human cells 10-to-1. Despite their popular reputation as disease-causers, there are bacteria in the human body, especially in the intestinal tract, that are not harmful, and the backpackers fall into that category.

Gracias' bacteria don't really carry little nylon or canvas backpacks. Their "backpacks" are micro- or nano-sized molecules or devices that have useful optical, electrical, magnetic, electrical or medicinal properties. The cargos that the team tested also varied in size, shape and material. So far, the team has loaded beads, nanowires and lithographically fabricated nanostructures onto bacteria.

Other scientists are seeking to enlist bacteria in transporting nano-cargo. They already have established, for instance, that large numbers of bacteria — so-called "bacterial carpets" — can move tiny objects. Gracias' research focuses on attaching one piece of cargo to an individual bacterium, rather than many bacteria to much larger cargo. The bacteria, termed "biohybrid devices," can still move freely, even with the cargo stuck to them.

"This is very early-stage exploratory research to try and enable new functionalities for medicine at the micro- and nanoscale by leveraging traits from bacteria," explained Gracias. "Our next steps would be to test the feasibility of the backpacking for diagnosing and treating disease in laboratory experiments. If that proves possible, we would move on to tests in laboratory mice. This could take a few years to complete."

Explore further: 'Bacterial dirigibles' emerge as next-generation disease fighters

More information:
We present "backpacking bacteria" – biohybrid devices comprised of bacteria attached to micro/nano scale cargo. Backpacking bacteria combine the advantages of bacteria and cargo for use in diagnostic and therapeutic applications. Bacteria offer numerous advantages on account of their sizes, their ability to respond to diverse stimuli, to convert chemical energy into motion and to grow naturally in niches within the body. Recent advances in micro/nanotechnologies have enabled the fabrication of micro/nano scale cargo of controlled sizes, shapes, geometries with tunable properties such as optical, electrical or magnetic properties. In our work, we investigate mechanisms of conjugating bacteria to cargo via non-specific, charge or antibody based interactions. Additionally, we vary the size, shape and material of the cargo conjugated to the bacteria. We investigate the properties of the resultant biohybrid such as the motility/chemotactic response of bacteria and magnetic/optical properties of the cargo. Prospects of utilizing backpacking bacteria for extra and/or intracellular delivery of diagnostic or therapeutic cargo are envisioned.

Related Stories

Overweight? Get someone else's gut bacteria

March 18, 2011

People who are overweight may have different gut bacteria from those in their slender fellow human beings. This is the contention of Willem de Vos, professor of Microbiology at Wageningen University, The Netherlands, in his ...

Magnetic nanoparticles detect and remove harmful bacteria

November 19, 2007

Researchers in Ohio report the development of magnetic nanoparticles that show promise for quickly detecting and eliminating E. coli, anthrax, and other harmful bacteria. In laboratory studies, the nanoparticles helped detect ...

Virus uses 'Swiss Army knife' protein to cause infection

August 17, 2011

In an advance in understanding Mother Nature's copy machines, motors, assembly lines and other biological nano-machines, scientists are describing how a multipurpose protein on the tail of a virus bores into bacteria like ...

Bile sends mixed signals to E. coli

March 30, 2010

Bile secretions in the small intestine send signals to disease-causing gut bacteria allowing them to change their behaviour to maximise their chances of surviving, says Dr Steve Hamner, presenting his work at the Society ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.