Transparent iron? For the first time, an experiment shows that atomic nuclei can become transparent

February 8, 2012
Multiple images of two objects located between two parallel mirrors illustrate the principle of electromagnetically induced transparency of atomic nuclei: The interaction of X-rays with two layers of iron within such a system of mirrors (an optical resonator) leads to a quantum mechanical superposition state of iron and its mirror images that causes the iron atomic nuclei to appear transparent. Credit: Dr. Ralf Roehlsberger, DESY

At the high-brilliance synchrotron light source PETRA III, a team of DESY scientists headed by Dr. Ralf Röhlsberger has succeeded in making atomic nuclei transparent with the help of X-ray light. At the same time they have also discovered a new way to realize an optically controlled light switch that can be used to manipulate light with light, an important ingredient for efficient future quantum computers.

The research results are presented in the current edition of the scientific journal Nature.

The effect of electromagnetically induced transparency (EIT) is well known from laser physics. With intense laser light of a certain wavelength it is possible to make a non-transparent material transparent for light of another wavelength. This effect is generated by a complex interaction of light with the atomic electron shell. At DESY's X-ray source PETRA III, the Helmholtz research team of Röhlsberger managed to prove for the first time that this transparency effect also exists for X-ray light, when the X-rays are directed towards atomic nuclei of the Mössbauer isotope iron-57 (which makes up 2% of naturally occurring iron). Quite remarkably, only very low light intensities are needed to observe this effect, in contrast to standard EIT experiments.

How does the experiment work? The scientists positioned two thin layers of iron-57 atoms in an optical cavity, an arrangement of two parallel platinum mirrors that reflect X-ray light multiple times. The two layers of iron-57 atoms, each approximately three nanometres thick, are precisely kept in position between the two platinum mirrors by carbon, which is transparent for X-ray light of the wavelength used. This kind of sandwich with a total thickness of only 50 nanometres is irradiated under very shallow angles with an extremely thin X-ray beam from the PETRA III synchrotron .

Within this mirror system, the light is reflected back and forth several times, generating a standing wave, a so-called resonance. When the light wavelength and the distance between both iron layers are just right in proportion, the scientists can see that the iron becomes almost transparent for the X-ray light. In order for this effect to occur, one iron layer must be located exactly in the minimum (node) of the light resonance, the other one exactly in the maximum. When the layers are shifted within the cavity, the system immediately becomes non-transparent. The scientists attribute this observation to a quantum-optical effect, caused by the interaction of atoms in the iron layers.

Unlike single atoms, the atoms in an optical cavity together absorb and radiate in synchrony. In the geometry of this experiment their oscillations mutually cancel each other, as a result of which the system appears to be transparent. In contrast to previous experiments in the optical regime, only few light quanta are necessary to generate this effect.

"Our result of achieving transparency of is virtually the EIT effect in the atomic nucleus," Röhlsberger describes the experiments. "Undoubtedly, there is still a long way to go until the first quantum light computer becomes reality. However, with this effect, we are able to perform a completely new class of quantum-optical experiments of highest sensitivity. With the European XFEL X-ray laser, currently being built in Hamburg, there is a real chance to control X-ray light with X-ray light."

This experiment definitely means considerable technical progress for quantum computing: apart from the basic possibility to make materials transparent with light, the intensity of light is decisive for a future technical realisation as well. Every additional quantum of light produces additional waste heat; this would be reduced by the use of the presently discovered effect.

For the continuation of these experiments and the optimal utilisation of the extremely small X-ray beam size of the highly brilliant X-ray source PETRA III, a new coating facility will be installed at DESY for the production and optimisation of these optical cavities.

The experiments of the DESY scientists also showed another parallel to the EIT effect: the light trapped in the only travels with the speed of a few metres per second – normally it is nearly 300 000 kilometres per second. With further experiments, the scientists will clarify how slow the light really becomes under these circumstances, and whether it is possible to use this effect scientifically. A possible application and at the same time an important building block on the way to light-quantum computers is, for example, the storage of information with extremely slow or even stopped pulses.

Explore further: Sharpening the focus of microscopes

More information: DOI: 10.1038/nature10741

Related Stories

Sharpening the focus of microscopes

December 2, 2011

A new advanced imaging scheme—with a resolution ten times better than that of its counterparts to date—can resolve objects as small as atoms1. Previously, the maximum resolution of optical instruments, including ...

First X-ray lasing of SACLA

June 17, 2011

RIKEN and the Japan Synchrotron Radiation Research Institute (JASRI) have successfully produced a first beam of X-ray laser light with a wavelength of 1.2 Angstroms. This light was created using SACLA, a cutting-edge X-ray ...

Light controls matter, matter controls x-rays

March 24, 2010

Like playing a game of scissors-paper-rock, a team of scientists led by Thornton E. (Ernie) Glover of Lawrence Berkeley National Laboratory's Advanced Light Source (ALS), Linda Young of Argonne National Laboratory, and Ali ...

SACLA X-ray free electron laser sets new record

June 13, 2011

RIKEN and the Japan Synchrotron Radiation Research Institute (JASRI) have successfully produced a beam of X-ray laser light with a wavelength of 1.2 Angstroms, the shortest ever measured. This record-breaking light was created ...

Recommended for you

A wave's 'sweet spot' revealed

June 29, 2017

For surfers, finding the "sweet spot," the most powerful part of the wave, is part of the thrill and the challenge.

Vortex-antivortex pairs found in magnetic trilayers

June 28, 2017

A international team of researchers has discovered magnetic vortex-antivortex pairs arising from correlated electron spins in a newly engineered trilayer material. The discovery could advance memory cells and points to the ...


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (4) Feb 08, 2012
Any crushed trash cans in the park near this research facility?

Joking aside, this is pretty neat. I'm excited to watch the Material Science Age unfolding before us.
5 / 5 (1) Feb 09, 2012
Any crushed trash cans in the park near this research facility?

I was thinking the exact same thing when I read the headline!
not rated yet Feb 09, 2012
That slowing down of light could be used to manage delays in broadcast signals so that the viewer at home is competely unaware that he is missing a wardrobe malfunction which has been snatched from him by a synchrotron in the network van parked outside the stadium.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.