Researchers discover novel chemical route to form organic molecules

January 13, 2012

An international team of scientists led by University of Hawai‘i at M?noa Professor Ralf I. Kaiser, Alexander M. Mebel of Florida International University, and Alexander Tielens of Leiden Observatory in the Netherlands, discovered a novel chemical route to form polycyclic aromatic hydrocarbons (PAHs) – complex organic molecules such as naphthalene carrying fused benzene rings – in ultra-cold regions of interstellar space. The team announced their findings in the January 3 issue of Proceedings of the National Academy of Sciences. Funding for the study was provided by the U.S. Department of Energy, Basic Energy Sciences.

These findings have crucial implications not only to reduce the emission of PAHs as toxic byproducts from internal combustion engines, but also rationalize the synthetic routes to a key class of in the associated with the origins of life. 

On Earth, PAHs are associated with incomplete combustion processes and can be formed readily at elevated temperatures in combustion engines of cars and in cigarette smoke. Once liberated into the ambient environment, PAHs can be transferred into the lungs by inhalation and are strongly implicated in the degradation of human health, particularly due to their high carcinogenic risk potential. PAHs are also serious water pollutants of marine ecosystems and bioaccumulate in the fatty tissue of living organisms. Together with leafy vegetables, where PAHs deposit easily, they have been further linked to soil contamination, food poisoning, liver lesions, and tumor growth.

Whereas on Earth, PAHs are classified as highly toxic, PAHs have been dubbed as the ‘cradle of life’ in the interstellar medium and are considered as key players in the astrobiological evolution. On the molecular level, functionalized PAHs carrying carbonyl and hydroxyl groups were found in organic extracts from the Murchison meteorite and form membrane-like boundary structures, the first indications of a cell type structure, which are requisite to the origin of life. The compounds that are water soluble form non-soluble vesicles, constituting molecules that possess both polar and non-polar components. The hollow droplets formed by this lipid multilayer are essential for the origin of life process since they provide an environment in which the functionalized PAHs can evolve by isolating and protecting them from the surrounding medium.

have been researching the formation of PAHs in combustion flames and in the interstellar medium for decades, but the formation mechanism of even the simplest PAH prototype – the naphthalene molecule (C10H8) as present in earthly mothballs - has remained an open question. Textbook knowledge postulates that classical reaction mechanisms involve complex reactions following hydrogen abstraction and acetylene addition (HACA) sequences with substantial ‘activation energies.’ These processes can only operate at high temperatures of a few 1,000 K as present, for instance, in combustion processes and in the outflows of carbon-rich stars and planetary nebulae. However, in recent years it has become quite clear that interstellar PAHs are rapidly destroyed in the interstellar medium upon photolysis, interstellar shock waves driven by supernova explosions, and energetic cosmic rays. The destruction time scales are much shorter than the timescale for injection of new material into the interstellar medium by carbon-rich Asymptotic Giant Branch (AGB) stars and carbon-rich planetary nebulae as the descendants of AGB stars. Therefore, the ubiquitous presence of PAHs in the interstellar medium implies a crucial, previously unexplained route to a fast chemical growth of PAHs in the cold environment of the interstellar medium at temperatures down to 10 K, where the classical HACA reaction mechanism cannot function, since entrance barriers (classical ‘activation energies’) cannot be overcome.

To unravel the formation of naphthalene as the simplest representative of PAHs, University of Hawai?i at M?noa chemists Dorian S.N. Parker, Fangtong Zhang, Seol Kim, and Ralf I. Kaiser conducted gas phase crossed molecular beam experiments in their laboratory and presented that naphthalene can be formed as a consequence of a single collision event via a barrier-less and exoergic reaction between the phenyl radical and vinylacetylene involving a van-der-Waals complex and submerged barrier in the entrance channel. Angular resolved mass spectrometer measurements of the reaction products together with isotopic labeling confirmed that naphthalene plus a single hydrogen atom, were produced. To support the derived mechanism involved in the formation of naphthalene, theoretical chemists at Florida International University (Alex Landera, Vadim V. Kislov, Alexander Mebel), merged the experimental results with theoretical computations. Theoretical computations also provide the three-dimensional distribution of electrons in atoms and thus the overall energy level of a molecule. Mebel's computations showed that naphthalene is formed from the reaction of a single phenyl radical colliding with vinylacetylene. Most importantly, since the temperatures of cold molecular clouds are very low (10 K), the computations indicate that the reaction has no entrance barrier (‘activation energy’).

“These findings challenge conventional wisdom that PAH-formation only occurs at high temperatures such as in combustion systems and implies that low temperature chemistry can initiate the synthesis of the very first PAH in the interstellar medium,” said co-author Tielens.

In the future, the team plans to expand these studies to unravel the formation routes to more complex PAHs like phenanthrene and anthracene, and also to nitrogen-substituted PAHs such as indole and quinoline. This concept can be also expanded to functionalized PAHs with organic side chains thus bringing researchers closer to solving the decade old puzzle of how complex PAHs and their derivatives can be synthesized in combustion flames and in cold interstellar space.

Explore further: NASA scientists on the trail of mystery molecules

Related Stories

NASA scientists on the trail of mystery molecules

May 25, 2011

( -- Space scientists working to solve one cosmic mystery at NASA's Ames Research Center, Moffett Field, Calif., now have the capability to better understand unidentified matter in deep space. Using a new facility ...

Cosmic Cockroaches

September 3, 2007

Starved. Stomped. Radiated. Poisoned. It's all in a day's work for the common household cockroach. The abuse these creatures can withstand is amazing.

Component of mothballs is present in deep-space clouds

September 2, 2009

( -- Interstellar clouds, drifting through the unimaginable vastness of space, may be the stuff dreams are made of. But it turns out there's an unexpectedly strange component in those clouds, and it's not dreams ...

Super-complex organic molecules found in interstellar space

June 21, 2010

( -- A team of scientists from the Instituto Astrofísica de Canarias (IAC) and the University of Texas has succeeded in identifying one of the most complex organic molecules yet found in the material between ...

NASA Reveals Key to Unlock Mysterious Red Glow in Space

August 2, 2010

( -- NASA scientists created a unique collection of polycyclic aromatic hydrocarbon (PAH) spectra to interpret mysterious emission from space. Because PAHs are a major product of combustion, remain in the environment, ...

Recommended for you

Astrophysicists discover dimming of binary star

January 16, 2017

A team of University of Notre Dame astrophysicists led by Peter Garnavich, professor of physics, has observed the unexplained fading of an interacting binary star, one of the first discoveries using the University's Sarah ...

Hubble gazes into a black hole of puzzling lightness

January 13, 2017

The beautiful spiral galaxy visible in the center of the image is known as RX J1140.1+0307, a galaxy in the Virgo constellation imaged by the NASA/ESA Hubble Space Telescope, and it presents an interesting puzzle. At first ...

Simulations suggest Planet Nine may have been a rogue

January 12, 2017

(—Space researchers James Vesper and Paul Mason with New Mexico State University have given a presentation at this year's American Astronomical Science meeting outlining the results of simulations they have been ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.