NASA Reveals Key to Unlock Mysterious Red Glow in Space

August 2, 2010
Above image combines visible-infrared Spitzer Space Telescope images of the galaxy Messier-82. The red streaming away from the galaxy into intergalactic space traces the infrared emission from PAHs.

( -- NASA scientists created a unique collection of polycyclic aromatic hydrocarbon (PAH) spectra to interpret mysterious emission from space. Because PAHs are a major product of combustion, remain in the environment, and are carcinogenic, the value of this PAH spectral collection extends far beyond NASA and astronomical applications.

For years, scientists have been studying a mysterious infrared glow from the Milky Way and other galaxies, radiating from dusty regions in deep space. By duplicating the harsh conditions of space in their laboratories and computers, scientists have identified the mystifying infrared emiters as PAHs. PAHs are flat, chicken-wire shaped, nano-sized molecules that are very common on Earth.

“PAHs in space are probably produced by carbon-rich, . A similar process produces soots here on Earth,” said Louis Allamandola, an astrochemistry researcher at NASA’s Ames Research Center, Moffett Field, Calif. “Besides astronomical applications, this PAH database and software can be useful as a new research tool for scientists, educators, policy makers, and consultants working in the fields of medicine, health, chemistry, fuel composition, engine design, environmental assessment, environmental monitoring, and environmental protection.”

To manage the research data, NASA built a database that now can be shared over the internet. It’s the world’s largest collection of PAH , and the website contains nearly 700 spectra of PAHs in their neutral and electrically charged states. In addition, it has tools to download PAH spectra ranging in temperature from minus 470 to 2000 degrees Fahrenheit. Thanks to these spectra, PAHs are now known to be abundant throughout the universe, but in exotic forms not readily found on Earth.

This mysterious from was discovered in the 1970’s and 1980’s. While the infrared signature hinted that PAHs might be responsible, laboratory spectra of only a handful of small, individual PAHs were available to test this idea. To make matters worse, these were only for neutral, solid PAHs, not representive for PAHs as they would be in space, where they’d be electrically charged, very cold, individual molecules floating in the gas.

By the mid-1990's, observations showed this infrared emission as surprisingly common and widespread across the universe, implying that the unknown carrier was abundant and important. To better understand PAHs, then thought to be too complex to be present in space, their spectra were measured under astronomical conditions.

To capture their spectra, Allamandola led a team of scientists to measure PAH spectra under simulated astronomical conditions and with computer software. This team consisted of experts in many different fields. "This group made a tremendous effort to make this a reality," said Allamandola. "There are now nearly 700 spectra in the database. Six hundred of these have been theoretically computed, and sixty have been measured in the laboratory. The theoretical spectra span the range from two to 2000 microns, the experimental spectra cover two to 25 microns."

Above image is an interstellar nebula, showing the emission from PAHs in red, some PAH molecular structures and the interstellar PAH infrared signature.

The spectra have given insights into the PAHs in space that were impossible to get any other way. Scientists predict that in the near future these spectra will be especially valuable for interpreting observations made with NASA's new airborne observatory, the Stratospheric Observatory for Infrared Astronomy (SOFIA) and the recently launched European Space Agency's (ESA) Herschel Telescope.

They tried to make the website user friendly for researchers. One can explore the database by charge, composition and spectral signatures. Tools allow users to do analyses online. For example, spectra can be combined to create a `composite' signature that can be compared directly to the spectrum of ‘unknown’ material.

"We will expand the database and tools,” said Christiaan Boersma, a NASA postdoctoral fellow at Ames, who designed and developed many parts of the website and tools. "We now use the database to interpret astronomical observations from star and planet forming regions in our galaxy, the Milky Way, and even other galaxies."

“Initially, our hope was to help interpret the experimental , but over time, our computational capabilities made it possible to study molecules much larger than can be studied in the laboratory,” said Charles Bauschlicher, Jr., a world renowned computational chemist at NASA Ames.

"Thanks to the great sensitivity of the Spitzer Telescope, PAHs are seen across the universe, removing any doubt of the importance of these species,” said Allamandola.

Explore further: Component of mothballs is present in deep-space clouds

More information: The database is available at

Related Stories

Component of mothballs is present in deep-space clouds

September 2, 2009

( -- Interstellar clouds, drifting through the unimaginable vastness of space, may be the stuff dreams are made of. But it turns out there's an unexpectedly strange component in those clouds, and it's not dreams ...

Cosmic Cockroaches

September 3, 2007

Starved. Stomped. Radiated. Poisoned. It's all in a day's work for the common household cockroach. The abuse these creatures can withstand is amazing.

Sources of pollution in waterways

March 9, 2010

Polycyclic aromatic hydrocarbons (PAHs) are components of petroleum products such as gasoline, coal, and oil. They are also produced as by-products of the combustion of fuels including petroleum and fire wood. PAHs can cause ...

Mars Rover device gets new mission on Earth

February 5, 2009

Developed to sniff out extraterrestrial life on other planets, a portable device known as the Mars Organic Analyzer (MOA) is taking on a new role in detecting air pollutants on Earth. Researchers in California report the ...

Recommended for you

Solar minimum surprisingly constant

November 17, 2017

Using more than a half-century of observations, Japanese astronomers have discovered that the microwaves coming from the sun at the minimums of the past five solar cycles have been the same each time, despite large differences ...

Lava or not, exoplanet 55 Cancri e likely to have atmosphere

November 16, 2017

Twice as big as Earth, the super-Earth 55 Cancri e was thought to have lava flows on its surface. The planet is so close to its star, the same side of the planet always faces the star, such that the planet has permanent day ...

NASA detects solar flare pulses at Sun and Earth

November 16, 2017

When our Sun erupts with giant explosions—such as bursts of radiation called solar flares—we know they can affect space throughout the solar system as well as near Earth. But monitoring their effects requires having observatories ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

4.7 / 5 (3) Aug 02, 2010
Space pollution worse than first thought. We may need a concerted effort to clean it up before visibility is reduced too far.

Space smog is funny - at least to me.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.