How exposure to irregular light affects plant circadian rhythms

December 14, 2011
Researchers exposed plants to irregular light breaks during the night and discovered a correlation between circadian-regulated processes and plant growth. Credit: Photo courtesy of Katrine Kjaer

Scientists know that plants can actually "sense" day length, and "schedule" their growth to coincide with specific environmental conditions. These natural events are based on the circadian clock, a 24-hour system found in most biochemical and physiological processes. Plants grow better in circadian conditions that correspond to natural environments, but until now researchers have not understood how plants' internal circadian clocks respond to irregular lighting environments such as those found in many greenhouses.

Greenhouses in northern latitudes rely heavily on supplemental light sources to extend the number of light hours during the day. To conserve electricity and lower costs, newer low-energy input systems use lights only during less expensive off-peak hours and turn lighting off during peak load periods in the afternoon and in the morning. These systems, though more cost-effective than conventional lighting methods, create irregular lighting patterns of natural sunlight interrupted with —a challenge for both growers and plants.

Danish scientists Katrine Heinsvig Kjaer and Carl-Otto Ottosen from the Department of Horticulture at Aarhus University published a study in a recent issue of the Journal of the American Society for Horticultural Science that sheds light on the question of plants' response to interruptions in lighting cycles. "Circadian rhythms are believed to be of great importance to plant growth and performance under fluctuating climate conditions. However, it has not been known how plants with a functioning respond to irregular light environments that disturb circadian-regulated parameters related to growth", they explained.

For their experiments, the team used 300 cuttings of chrysanthemum (Chrysanthemum morifolium 'Coral Charm') grown in 19 hours of light for 2 weeks. The plants were then randomly placed in either of two greenhouse compartments with similar temperatures and carbon (CO2) concentration. "The plants were exposed to supplemental light provided as irregular light breaks during the night, which we achieved by controlling the light based on forecasted solar irradiance and electricity prices', explained the authors. "Growth, in terms of carbon gain, was linearly correlated to both day length and daily light integral."

The scientists observed that chrysanthemum plants grown in short days with irregular light breaks during the night showed more rapid leaf development and stem growth than plants grown in a climate with a consecutive long light period, proving that low average light intensity promotes expansion of the photosynthetic area of the plants. Though the experiments showed that irregular light periods disturb circadian rhythm and induce changes in leaf characteristics, the authors noted that the study also proved that plants can naturally adapt to irregular light periods.

Kjaer and Ottosen say their research should help greenhouse operators realize energy savings in the area of supplemental usage.

Explore further: Circadian clock controls plant growth hormone

More information: The complete study and abstract are available on the ASHS Journal of the American Society for Horticultural Science electronic journal web site: journal.ashspublications.org/cgi/content/abstract/136/1/3

Related Stories

Circadian clock controls plant growth hormone

August 13, 2007

The plant growth hormone auxin is controlled by circadian rhythms within the plant, UC Davis researchers have found. The discovery explains how plants can time their growth to take advantage of resources such as light and ...

A mammalian clock protein responds directly to light

July 1, 2008

We all know that light effects the growth and development of plants, but what effect does light have on humans and animals? A new paper by Nathalie Hoang et al., published in PLoS Biology this week, explores this question ...

Study: lighting and how it affects health

October 19, 2005

Rensselaer Polytechnic Institute scientists in Troy, N.Y., say they've discovered a way of testing architectural lighting and how it affects human health.

Recommended for you

Ants need work-life balance, research suggests

January 16, 2017

As humans, we constantly strive for a good work-life balance. New findings by researchers at Missouri University of Science and Technology suggest that ants, long perceived as the workaholics of the insect world, do the same.

New tools will drive greater understanding of wheat genes

January 16, 2017

Howard Hughes Medical Institute scientists have developed a much-needed genetic resource that will greatly accelerate the study of gene functions in wheat. The resource, a collection of wheat seeds with more than 10 million ...

How China is poised for marine fisheries reform

January 16, 2017

As global fish stocks continue sinking to alarmingly low levels, a joint study by marine fisheries experts from within and outside of China concluded that the country's most recent fisheries conservation plan can achieve ...

Common crop chemical leaves bees susceptible to deadly viruses

January 16, 2017

A chemical that is thought to be safe and is, therefore, widely used on crops—such as almonds, wine grapes and tree fruits—to boost the performance of pesticides, makes honey bee larvae significantly more susceptible ...

SMiLE-seq: A new technique speeds up genetics

January 16, 2017

Scientists at EPFL have developed a technique that can be a game-changer for genetics by making the characterization of DNA-binding proteins much faster, more accurate, and efficient.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Isaacsname
5 / 5 (1) Dec 14, 2011
" However, it has not been known how plants with a functioning circadian clock respond to irregular light environments that disturb circadian-regulated parameters related to growth", they explained. "

..you've got to be kidding me.....this is old science, I learned this stuff at Penn state almost 20 years ago. No need to administer hormones to stimulate polyploids in some plants for example, you use photoperiodic interruptions to trigger the growth instead, I've been using this technique for at least as long.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.