German researchers discover exotic 'dark clusters' in their calculations

November 8, 2011

( -- Theoretical physicists at the University of Bonn propose a new class of celestial bodies: “Dark Star Clusters”, consisting of many black holes and some stars orbiting around each other. So far, such a structure is a hypothesis, but they could lead to deeper insights into supernovae explosions, gravitational wave generation and the evolution of star clusters. The scientists published their results in the Astrophysical Journal Letters.

Stars evolve from gas clouds, which contract very deeply due to their own gravity to start the solar fire. Only rarely are the stellar objects loners, they usually form in groups. These are places in the universe where a particularly large number of luminous gas balls form at once, and where after many millions to billions of years the stars also perish. If such clusters are still young, the dying stars end their lives in supernova explosions that emit extremely bright flashes. “If the masses of the stars are sufficiently large, extremely dense neutron stars and are left over”, says Professor Dr. Pavel Kroupa of the Argelander Institute for Astronomy at Bonn University.

The extreme gravity captures light

In the vicinity of a black hole, the gravitational force is so great that not even light can escape. They are therefore invisible. Astronomers can detect the existence of black holes only when a gas cloud or a star is accelerating in its orbit by their extreme gravity. “Under certain conditions exceptionally many black holes develop in a star cluster,” says Dr. Sambaran Banerjee, who came from the prestigious “Tata Institute of Fundamental Research” in Mumbai (India) to Bonn as an Alexander von Humboldt Fellow. “In these cases, we propose to call them ‘dark star clusters’, which consist of black holes and some stars circling around each other.”

The original question the Bonn physicists wanted to investigate are the physical properties of dying star clusters. Carried out on high performance computers, their calculations surprisingly showed that such “dark clusters” have to form. “The stars in the cluster perform chaotic dances”, reports Professor Kroupa. “They attract each other due to gravity and therefore constantly change their path”. Gravity binds the star cluster, so that at first the dancers remain together. However, the dance partners evolve. “Over time the lighter stars vaporize”, said Professor Kroupa. “The heavier black holes and neutron stars resulting from supernovae, however, accumulate increasingly - the star cluster thereby becomes increasingly darker, because these components do not emit light”. This way “dark star clusters” develop. The curtain of the cosmic dance performance thus closes gradually.

A “kick” with some 100 kilometers per second

When a supernova explodes, it can happen that the resulting black holes are greatly accelerated and ejected from the young star clusters. “This ‘kick’ can have several 100 kilometers per second”, says Dr. Banerjee. Thus, the black holes are lost and a “dark cluster” can not develop. “The closer the star cluster is to the center of the Milky Way, the larger is the surrounding gravity”, explains Professor Kroupa. Then the light stars can evaporate faster than the black holes kick each other out of the aging star cluster. “Our calculations show that dark clusters can only occur within a distance of about 15,000 light years from the center of the Milky Way”, says Dr. Banerjee. Further away the light stars vaporize too slowly, so the dark phase can not be achieved.

“So far there is no way to verify whether the black holes and neutron stars stay in the star cluster”, adds Professor Kroupa. “Using the dark star clusters, which we propose based on our calculations, this now becomes possible”. A “dark star cluster” can be recognized from the fact that the remaining stars in it are moving much faster than predicted. “The stars seem to be held together by an invisible force or mass”, says Dr. Banerjee. This force is the additional gravity of the black holes and the neutron existing in the star cluster.

“Astronomers can now specifically search for dark star clusters”, says Professor Kroupa. “If they are indeed found, then an exotic new class of celestial bodies would be discovered”. “In addition, the star clusters would then be the source of gravitational waves that Einstein predicted based on his general theory of relativity and which is among the most important predictions that the scientists are eager to verify”, adds Dr. Banerjee. “The finding of ‘dark star clusters’ would improve the understanding of the physics of supernova explosions too”, concludes the physicists of the University of Bonn.

Explore further: Could primordial black holes be dark matter?

More information: Sambaran Banerjee and Pavel Kroupa: A new type of compact stellar population: dark star clusters, 2011, The Astrophysical Journal Letters, doi: 10.1088/2041-8205/741/1/L12

Related Stories

Could primordial black holes be dark matter?

September 21, 2011

( -- “We know that about 25% of the matter in the universe is dark matter, but we don’t know what it is,” Michael Kesden tells “There are a number of different theories about what ...

VLT finds a brilliant but solitary superstar

May 25, 2011

( -- An extraordinarily bright isolated star has been found in a nearby galaxy -- the star is three million times brighter than the Sun. All previous similar "superstars" were found in star clusters, but this ...

Cosmic thread that binds us revealed

September 29, 2011

( -- Astronomers at The Australian National University have found evidence for the textile that forms the fabric of the Universe.

'Oddball' star cluster is a hybrid, astronomer finds

June 1, 2011

( -- Scientists will tell you that the romantic idea is factually true: we are made of the same stuff as stars. In fact, all chemical elements heavier than helium are made in the stars, and research into how the ...

Milky Way in mid-life crisis

May 25, 2011

( -- The Milky Way is suffering from a mid-life crisis with most of its star formation behind it, new research from Swinburne University of Technology has shown.

Recommended for you

In search of the ninth planet

October 17, 2017

A University of Michigan doctoral student has logged two pieces of evidence that may support the existence of a planet that could be part of our solar system, beyond Neptune.

Microbes leave 'fingerprints' on Martian rocks

October 17, 2017

Scientists around Tetyana Milojevic from the Faculty of Chemistry at the University of Vienna are in search of unique biosignatures, which are left on synthetic extraterrestrial minerals by microbial activity. The biochemist ...

To keep Saturn's A ring contained, its moons stand united

October 17, 2017

For three decades, astronomers thought that only Saturn's moon Janus confined the planet's A ring - the largest and farthest of the visible rings. But after poring over NASA's Cassini mission data, Cornell astronomers now ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Nov 08, 2011
German researchers discover exotic 'dark clusters' in their calculations

An hypothesis is not a discovery.
5 / 5 (2) Nov 08, 2011
The paper discussed is not about star clusters that are totally comprised of black holes, but of clusters where the majority of the massive members are stellar mass black holes that have either ejected or lost their stellar companions through stellar evolution (gone supernova) or have been picked off by the SMBH Sag-A*.

The peculiar stellar grouping IRS 13E resides only a few parsecs away from the SMBH and it appears that a previously proposed 10^4 IMBH, through xray analysis, is not plausible. A population of stellar-mass BHs is one of the proposed mechanisms to account for this strange massive stellar grouping so close to Sag-A*.

A preprint of the article is available here:

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.