Recent advance in detonation theory

November 18, 2011, Science in China Press

A detonation wave is a chemical reaction wave propagating at the velocity of a shock wave along the explosive charge. There is great demand for a detonation model that can accurately simulate the detonation process, which would provide a theoretical basis for highly efficient military destruction, the initiation of an atomic bomb, and calculations relating to the supernova SN Ia explosion. Detonation is complicated in that it involves mechanics, chemistry and thermodynamics simultaneously. The detonation product particles move multi-dimensionally, and there are transport effects, such as friction, diffusion and heat transfer, between particles. Because of the difficulty of simulating such complex configurations, classical detonation theory, which employs the ZND model, neglects the transport effects and simplifies detonation as one-dimensional movement. However, experiments have shown that the complex movement and transport effects play important roles in detonation and should be taken into account.

Taking the complex multi-dimensional movement into account, Hu et al. at the Xian Modern Institute proposed the use of the entropy principle to specify the final point of detonation, and the use of the Hamilton principle to describe the complex movement of detonation product particles and determine the real path from explosive to products. A new detonation model named the least-action detonation model (LADM) has been proposed [1].

The least-action principle is one of the basic principles of nature, from which nearly all physical equations can be derived, including the equations of Newtonian mechanics, relativistic mechanics, , Maxwell's equations, Fermat's principle in optics, and Schrödinger equations in quantum mechanics. In analytical mechanics, the least-action principle is known as Hamilton's principle, which is equivalent to Newton's Law and applies to complex mechanical systems. Hu and Li et al. introduced the Hamilton principle into detonation science to bypass the difficulty of describing the complex movement and transport effects in detonation [2].

Because the LADM model takes complex movement and transport effects into account, the detonation configuration described by the LADM model differs from that described by the ZND model. The flow after the reaction zone in the ZND model is the changing Taylor rarefaction, whereas it is a stationary state in the LADM model. From the displacement of titanium foils embodied in the explosive charge, the movement state of detonation product particles can be judged. The X-ray photograph in Figure 1 shows that the titanium foil initially moves 1 mm because of the moving particles in the reaction zone, and then stops moving and is in a stationary state, which coincides with the prediction of the LADM model.

Much evidence that detonation particles are in a stationary state has already been given in the literature on detonation in the form of data, graphs and photographs. However, such evidence has not been addressed because of its contradiction with the ZND model; moreover, the stationary state has never been considered as the essence of detonation. Blasting models derived for a stationary state have long been used in blasting engineering, but the stationary state has been considered only an assumption because it contradicts the ZND model.

Because the LADM model solves many problems relating to detonation phenomena that cannot be explained by the ZND model, the use of the LADM model also proposes a series of research subjects in detonation science.

In recent years, detonation science has focused on the sub-macroscopic and sub-microscopic structures of detonation phenomena. By contrast, the LADM model emphasizes the general direction decided by the second law of thermodynamics, to grasp the essence of the detonation process.

According to the LADM model in which complex movement and transport effects are taken into account, the detonation path and final point of detonation should differ from those suggested by the ZND model.

Compared with the ZND model, the LADM model incorporates many partial differential equations corresponding to the multiformity of detonation. It is a challenge to solve these partial differential equations, which involve mechanics, chemistry and simultaneously.

Many equations of state have been proposed to calculate the moving Chapman–Jouguet state of detonation products. As theory and experiments show that detonation products are in a stationary state, the establishment of new equations of state becomes an urgent task in the field of detonation science.

"Standard candles" calculations for the supernovae SN Ia explosion have shown that the ZND model is not able to simulate precisely the complex process of detonation and a new model is needed. The LADM model incorporating many partial differential equations is one such candidate model.

Explore further: MIT takes aim at ‘phantom’ traffic jams

More information: 1 Hu S M, Tian Q Z, Xiao C,et al. A new detontion model and its examination by experiment(in Chinese).Sci Sin Phys Mech Astro,2011,41:1230-1238, doi:10.1360/132011-252

2 Hu S M,Li C F,Ma Y H,et al. A detonation model of high/low velocity detonation. Propellants, Explosives, Pyrotechnics,2007,32(1):73-79, doi10.1002/prep,20070010.

DOI: 10.1007/s11434-011-9942-2

Related Stories

MIT takes aim at ‘phantom’ traffic jams

June 9, 2009

( -- Countless hours are lost in traffic jams every year. Most frustrating of all are those jams with no apparent cause — no accident, no stalled vehicle, no lanes closed for construction.

In Brief: Nuclear explosion debris may reveal bomb's origin

November 9, 2010

Nuclear explosion debris may contain microscopic evidence that could help investigators determine the origin of the bomb, according to a study published this week in the journal Proceedings of the National Academy of Sciences.

Recommended for you

Biologists' new peptide could fight many cancers

January 16, 2018

MIT biologists have designed a new peptide that can disrupt a key protein that many types of cancers, including some forms of lymphoma, leukemia, and breast cancer, need to survive.

Insulating bricks with microscopic bubbles

January 16, 2018

The better a building is insulated, the less heat is lost in winter—and the less energy is needed to achieve a comfortable room temperature. The Swiss Federal Office of Energy (SFOE) regularly raises the requirements for ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Nov 18, 2011
can this be used for internal combustion engines
1 / 5 (1) Nov 19, 2011
can this be used for internal combustion engines

Only once!
not rated yet Nov 19, 2011
can this be used for internal combustion engines

Only once!


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.