Blue stragglers: Astronomers discover how mysterious stars stay so young

October 19, 2011 By Megan Fellman, Northwestern University
Blue stragglers: Astronomers discover how mysterious stars stay so young
An artist’s conception showing a blue straggler being created by mass transfer in a binary star system. The giant star, seen in red, has lost hold of its outer envelope. This material is pulled towards its partner, forming an accretion disk, and is eventually consumed by the “proto-blue straggler." (Illustration by Aaron Geller)

( -- Mysterious "blue stragglers" are old stars that appear younger than they should be: they burn hot and blue. Several theories have attempted to explain why they don't show their age, but, until now, scientists have lacked the crucial observations with which to test each hypothesis.

Armed with such , two astronomers from Northwestern University and the University of Wisconsin-Madison report that a mechanism known as mass transfer explains the origins of the . Essentially, a blue straggler eats up the mass, or outer envelope, of its companion. This extra fuel allows the straggler to continue to burn and live longer while the is stripped bare, leaving only its white dwarf core.

The scientists report their evidence in a study to be published Oct. 20 by the journal Nature.

The majority of blue stragglers in their study are in binaries: they have a companion star. "It's really the companion star that helped us determine where the blue straggler comes from," said Northwestern astronomer Aaron M. Geller, first author of the study. "The companion stars orbit at periods of about 1,000 days, and we have evidence that the companions are . Both point directly to an origin from mass transfer."

Geller is the Lindheimer Postdoctoral Fellow in the Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and the department of physics and astronomy in Northwestern's Weinberg College of Arts and Sciences. Robert Mathieu, professor of astronomy and chair of the astronomy department at UW-Madison, is co-author of the study.

The astronomers studied the NGC 188 open cluster, which is in the constellation Cepheus, situated in the sky near Polaris, the North Star. This cluster is one of the most ancient open star clusters, but it features these mysterious young blue stragglers.

The cluster has around 3,000 stars, all about the same age, and has 21 blue stragglers. Geller and Mathieu are the first to use detailed observational data from the WIYN Observatory in Tucson, Ariz., of the blue stragglers in NGC 188.

They used the information to analyze and compare the three main theories of blue straggler formation: collisions between stars, mergers of stars and mass transfer from one star to another. The only one left standing was the theory of .

The light from the blue stragglers' companion stars is not actually visible in Geller and Mathieu's observations. While the companions haven't been seen directly, their effect on the blue stragglers is evident: each companion pulls gravitationally on its blue straggler and creates a "wobble" as it orbits, and this allows astronomers to measure the mass of the companion stars. The WIYN data show that each companion star is about half the mass of the sun, which is consistent with a white dwarf.

The other two origin theories -- collisions and mergers -- require the companion stars to be more massive than what is observed. In fact, in both scenarios, some of the companion stars could be bright enough to be visible in the WIYN data, which is not the case.

"We think we have a good understanding of stellar evolution, but it doesn't predict blue stragglers," Geller said. "People have been trying to explain the origin of blue stragglers since their discovery in 1953, and now we have the detailed observations needed to identify how they were created. I've always enjoyed trying to get to the bottom of a mystery."

"As so often happens in astronomy, it is the objects that you don't see that provide the critical clues," said Mathieu, an expert on binary stars. "Now we will use the Hubble Space Telescope to search for the ultraviolet light in which white dwarf secondary stars shine."

Geller, Mathieu and their colleagues will have, in about a year's time, observations from Hubble that will tell them if the blue stragglers' companions are indeed white dwarfs.

The NGC 188 data set was collected during the last decade by the 3.5-meter WIYN Telescope on Kitt Peak, Ariz., as part of the WIYN Open Cluster Study led by Mathieu. The observatory is operated by UW-Madison, Indiana University, Yale University and the National Optical Astronomical Observatory (NOAO).

Explore further: Even stars get fat -- And 'stellar cannibalism' is the reason

More information: "A Mass Transfer Origin for Blue Stragglers in NGC 188 as Revealed by Half-Solar-Mass Companions" Nature, Oct 20, 2011.

Related Stories

Vampires and collisions rejuvenate stars

December 23, 2009

Stars in globular clusters are generally extremely old, with ages of 12-13 billion years. However, a small fraction of them appear to be significantly younger than the average population and, because they seem to have been ...

Binary white dwarf stars

May 4, 2011

( -- When a star like our sun gets to be very old, after another seven billion years or so, it will no longer be able to sustain burning its nuclear fuel.

Feuding helium dwarfs exposed by eclipse

May 24, 2011

Researchers at the University of Warwick have found a unique feuding double white dwarf star system where each star appears to have been stripped down to just its helium.

Recommended for you

Neutron-star merger yields new puzzle for astrophysicists

January 18, 2018

The afterglow from the distant neutron-star merger detected last August has continued to brighten - much to the surprise of astrophysicists studying the aftermath of the massive collision that took place about 138 million ...

New technique for finding life on Mars

January 18, 2018

Researchers demonstrate for the first time the potential of existing technology to directly detect and characterize life on Mars and other planets. The study, published in Frontiers in Microbiology, used miniaturized scientific ...

North, east, south, west: The many faces of Abell 1758

January 18, 2018

Resembling a swarm of flickering fireflies, this beautiful galaxy cluster glows intensely in the dark cosmos, accompanied by the myriad bright lights of foreground stars and swirling spiral galaxies. A1758N is a sub-cluster ...


Adjust slider to filter visible comments by rank

Display comments: newest first

2.3 / 5 (7) Oct 20, 2011
"blue stragglers" are old stars that appear younger

If "blue stragglers" are old, is the value of the He/H ratio higher than in younger stars?

With kind regards,
Oliver K. Manuel
not rated yet Oct 20, 2011
Since they continually gain new mass (presumably mostly H from the outer layerst of the companion) that depends entirely on the rate of gain and the amount already gained.

The longer burn time would increase He ratio but the gained mass would decrease it.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.