Physicists capture microscopic origins of thinning and thickening fluids

September 1, 2011 By Anne Ju
A snapshot of the configuration of particles suspended in fluid. The colored spheres indicate the presence of hydroclusters, which form at high rates of shear.

( -- In things thick and thin: Cornell physicists explain how fluids – such as paint or paste - behave by observing how micron-sized suspended particles dance in real time. Using high-speed microscopy, the scientists unveil how these particles are responding to fluid flows from shear – a specific way of stirring.

Ever wonder why paint is thick enough to stay on a wall but thin enough to spread evenly with a brush? Or, how people can run across a swimming pool filled with a cornstarch-water mixture without sinking? They're both examples of what happens when particles are suspended in fluids.

Cornell scientists led by Itai Cohen, associate professor of physics, have explored why these fluids behave like they do by watching how micron-sized suspended particles dance in real time and space. Their observations are the first to link direct imaging of the particle motions with changes in liquid viscosity under shear -- or equivalently, when the fluid is stirred.

The research is published online Sept. 2 in the journal Science.

"What we want to find out is the microscopic origin of these non-Newtonian properties," said first author Xiang Cheng, a postdoctoral associate in physics. Such fluids are called non-Newtonian, because, unlike water or other Newtonian fluids, their viscosities change depending on how fast they're being sheared: think toothpaste, which is solid in the tube but flows like a liquid when squeezed or sheared.

Combining high-speed 3-D imaging techniques with a sensitive force-measuring device, the researchers tracked the motions of tiny particles suspended in the fluids while monitoring the thinning or thickening behaviors under shear. They found that fluids become thinner, or less viscous, when the random thermally induced darting motions of the particles could no longer keep up with their displacements due to the shear flows.

In addition, they showed fluids became thicker or more viscous when particles were driven past one another too quickly for the fluid between them to drain or get out of the way. At such high speeds, the particles form clusters that lock together and make the fluid more viscous. This result could partially explain why running (fast shear) across a cornstarch-water mixture doesn't cause the person to sink, but standing in the mixture (slow shear) does.

Their observations refute theories that such changes in fluid viscosity result from the formation and destruction of particle layers under shear. The idea behind these theories is that, like lanes on a highway, streamlining particle trajectories reduces random collisions and enables particles to flow past each other more smoothly. When the particles form layers at low shear rates, the viscosity decreases, causing the fluid to thin; when the particle layers break up at high shear rates, the viscosity increases, causing the fluid to thicken.

However, by directly imaging the layering and measuring the fluid viscosity, the Cornell scientists found that while the amount of layering and delayering was comparable, the changes in viscosity were substantially different in the thinning and thickening regimes. Moreover, the delayering occurred at shear rates much lower than those leading to thickening. Hence, they produced evidence that layering is not the major reason for viscosity changes in these suspensions.

Grasping the physics of shear thinning and thickening isn't just good for at-home science experiments; such non-Newtonian fluid phenomena are important for industry.

"In industry, understanding the thinning and thickening of materials is crucial for almost any transport process," Cohen said. These findings will improve the ability of scientists and engineers to handle complex fluids ranging from such industrial materials as paints, detergents and pastes, as well as such biological liquids as lymph and blood.

Explore further: Researchers discover new way to control particle motion

More information: The research article, "Imaging the microscopic structure of shear thinning and thickening colloidal suspensions," is published in Science (Sept. 2, 2011).

Related Stories

Researchers discover new way to control particle motion

March 17, 2008

Chemical engineers at The University of Texas at Austin have discovered a new way to control the motion of fluid particles through tiny channels, potentially aiding the development of micro- and nano-scale technologies such ...

The Physics of Whipped Cream

April 28, 2008

Let's do a little science experiment. If you have a can of whipped cream in the fridge, go get it out. Spray a generous dollop into a spoon and watch carefully.

Smashing fluids... the physics of flow

November 29, 2010

( -- Hit it hard and it will fracture like a solid... but tilt it slowly and it will flow like a fluid. This is the intriguing property of a type of ‘complex fluid’ which has revealed ‘new physics’ ...

Recommended for you

Developing quantum algorithms for optimization problems

July 26, 2017

Quantum computers of the future hold promise for solving complex problems more quickly than ordinary computers. For example, they can factor large numbers exponentially faster than classical computers, which would allow them ...

Physics discovery unlocks ingredients of 2-D 'sandwich'

July 26, 2017

Everything that exists in the digital world—photos, tweets, online courses, this article—is stored as 1's and 0's. At the software level, this information is written as computer code. At the hardware level, that code ...

A bar magnet creates chaos in plasma

July 25, 2017

Placing a magnet on your refrigerator might hold up your calendar, but researchers from India's Saha Institute of Nuclear Physics found that placing one outside a plasma chamber causes a localized, fireball-like structure. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.